That's my mega-commit you've all been waiting for.
The code for the shell share more routines with userspace apps than with kernel
units, because, well, its behavior is that of a userspace app, not a device
driver.
This created a weird situation with libraries and jump tables. Some routine
belonging to the `kernel/` directory felt weird there.
And then comes `apps/basic`, which will likely share even more code with the
shell. I was seeing myself creating huge jump tables to reuse code from the
shell. It didn't feel right.
Moreover, we'll probably want basic-like apps to optionnally replace the shell.
So here I am with this huge change in the project structure. I didn't test all
recipes on hardware yet, I will do later. I might have broken some...
But now, the structure feels better and the line between what belongs to
`kernel` and what belongs to `apps` feels clearer.
I've tested RAM usage when self-assembling and there weren't as high
as I thought. zasm's defaults now use less than 0x1800 bytes of RAM,
making it possible, theoretically for now, for a Sega Master System
to assemble Collapse OS from within itself.
I'm about to split the global registry in two (labels and consts)
and the previous state of registry selection made things murky.
Now it's much better.
During expression parsing, if a local label was parsed, it would
select the local registry and keep that selection, making
subsequent global labels register in the wrong place.
To run a parseExpr on first pass would always return a false success
with dummy value because symbols are configured to always succeed on
first pass. This would make expressions like ".fill 0x38-$" so bad
things to labels because "0x38-$" wouldn't return the same thing on
first and second pass.
Revert to parsing literals and symbols after having scanned for
expressions and add a special case specifically for char literals (which
is why we scanned for literals and symbols first in the first place).