That's my mega-commit you've all been waiting for.
The code for the shell share more routines with userspace apps than with kernel
units, because, well, its behavior is that of a userspace app, not a device
driver.
This created a weird situation with libraries and jump tables. Some routine
belonging to the `kernel/` directory felt weird there.
And then comes `apps/basic`, which will likely share even more code with the
shell. I was seeing myself creating huge jump tables to reuse code from the
shell. It didn't feel right.
Moreover, we'll probably want basic-like apps to optionnally replace the shell.
So here I am with this huge change in the project structure. I didn't test all
recipes on hardware yet, I will do later. I might have broken some...
But now, the structure feels better and the line between what belongs to
`kernel` and what belongs to `apps` feels clearer.
Most of register fiddling routines (which is now the only thing contained
in care.asm) are used by almost all userspace apps, often in inner loops.
That makes the penalty of using jump tables for those a bit too high.
Moreover, it burdens jump tables needlessly.
Because this unit is very small (now that string routines are out), it makes
sense to always include it in binaries.
We use zasm's ability to use labels in .equ directive.
We didn't do it before because for a while, we were in between scas
and zasm (scas was used in automated tests) so we needed to use the
lowest common denominator: zasm doesn't have macros and scas can't
use labels in .equ directives.
This forced us to add this layer of indirection. But now that we are
completely cut from scas' dependency, we can use this nice zasm's
ability.
The goal is to avoid mixing those routines with "character devices"
(acia, vpd, kbd) which aren't block devices and have routines that
have different expectations.
This is a first step to fixing #64.
This huge refactoring remove the Seek and Tell routine from blockdev
implementation requirements and change GetC and PutC's API so that they
take an address to read and write (through HL/DE) at each call.
The "PTR" approach in blockdev implementation was very redundant from
device to device and it made more sense to generalize. It's possible
that future device aren't "random access", but we'll be able to add more
device types later.
Another important change in this commit is that the "blockdev handle" is
now opaque. Previously, consumers of the API would happily call routines
directly from one of the 4 offsets. We can't do that any more. This
makes the API more solid for future improvements.
This change forced me to change a lot of things in fs, but overall,
things are now simpler. No more `FS_PTR`: the "device handle" now holds
the active pointer.
Lots, lots of changes, but it also feels a lot cleaner and solid.
This allows us to break through the 64K limit for includes CFS in zasm,
a limit we were dangerously close to breaking. In fact, this commit
makes us go over that limit. Right in time!
It was a bad idea to remove it. Now that I'm introducing the concept of
a per-app glue file, it becomes much easier to build emulated zasm as a
userspace app.