1
0
mirror of https://github.com/hsoft/collapseos.git synced 2024-11-02 18:10:55 +11:00

Compare commits

..

No commits in common. "2652c815190da91606660f9632a27ecdbec72299" and "aa8df95f7d144f512842127482eccec6c7d9c3c8" have entirely different histories.

3 changed files with 149 additions and 166 deletions

View File

@ -31,7 +31,7 @@ instrNames:
.equ I_BRBS 16
.db "BRBS", 0
.db "BRBC", 0
; Rd(5) + Rr(5) (from here, instrTbl8)
; Rd(5) + Rr(5) (from here, instrUpMasks1)
.equ I_ADC 18
.db "ADC", 0
.db "ADD", 0
@ -66,7 +66,7 @@ instrNames:
.db "IN", 0
.equ I_OUT 45
.db "OUT", 0
; no arg (from here, instrTbl16)
; no arg (from here, instrUpMasks2)
.equ I_BREAK 46
.db "BREAK", 0
.db "CLC", 0
@ -112,104 +112,90 @@ instrNames:
.db "XCH", 0
.db 0xff
; Instruction table
;
; A table row starts with the "argspecs+flags" byte, followed by two upcode
; bytes.
;
; The argspecs+flags byte is separated in two nibbles: Low nibble is a 4bit
; index (1-based, 0 means no arg) in the argSpecs table. High nibble is for
; flags. Meaning:
;
; Bit 7: Arguments swapped. For example, if we have this bit set on the argspec
; row 'A', 'R', then what will actually be read is 'R', 'A'. The
; arguments destination will be, hum, de-swapped, that is, 'A' is going
; in H and 'R' is going in L. This is used, for example, with IN and OUT.
; IN has a Rd(5), A(6) signature. OUT could have the same signature, but
; AVR's mnemonics has those args reversed for more consistency
; (destination is always the first arg). The goal of this flag is to
; allow this kind of syntactic sugar with minimal complexity.
;
; Bit 6: Second arg is a copy of the first
; In the same order as in instrNames
instrTbl:
; 8-bit constant masks associated with each instruction. In the same order as
; in instrNames
instrUpMasks1:
; Rd(5) + Rd(5): XXXXXXrd ddddrrrr
.db 0x02, 0b00011100, 0x00 ; ADC
.db 0x02, 0b00001100, 0x00 ; ADD
.db 0x02, 0b00100000, 0x00 ; AND
.db 0x41, 0b00100100, 0x00 ; CLR (Rr copies Rd)
.db 0x02, 0b00010100, 0x00 ; CP
.db 0x02, 0b00000100, 0x00 ; CPC
.db 0x02, 0b00010000, 0x00 ; CPSE
.db 0x02, 0b00100100, 0x00 ; EOR
.db 0x02, 0b00101100, 0x00 ; MOV
.db 0x02, 0b10011100, 0x00 ; MUL
.db 0x02, 0b00101000, 0x00 ; OR
.db 0x02, 0b00001000, 0x00 ; SBC
.db 0x02, 0b00011000, 0x00 ; SUB
.db 0b00011100 ; ADC
.db 0b00001100 ; ADD
.db 0b00100000 ; AND
.db 0b00100100 ; CLR
.db 0b00010100 ; CP
.db 0b00000100 ; CPC
.db 0b00010000 ; CPSE
.db 0b00100100 ; EOR
.db 0b00101100 ; MOV
.db 0b10011100 ; MUL
.db 0b00101000 ; OR
.db 0b00001000 ; SBC
.db 0b00011000 ; SUB
; Rd(4) + K(8): XXXXKKKK ddddKKKK
.db 0x04, 0b01110000, 0x00 ; ANDI
.db 0x04, 0b00110000, 0x00 ; CPI
.db 0x04, 0b11100000, 0x00 ; LDI
.db 0x04, 0b01100000, 0x00 ; ORI
.db 0x04, 0b01000000, 0x00 ; SBCI
.db 0x04, 0b01100000, 0x00 ; SBR
.db 0x04, 0b01010000, 0x00 ; SUBI
.db 0b01110000 ; ANDI
.db 0b00110000 ; CPI
.db 0b11100000 ; LDI
.db 0b01100000 ; ORI
.db 0b01000000 ; SBCI
.db 0b01100000 ; SBR
.db 0b01010000 ; SUBI
; Rd(5) + bit: XXXXXXXd ddddXbbb: lonely bit in LSB is 0 in all cases, so we
; ignore it.
.db 0x05, 0b11111000, 0x00 ; BLD
.db 0x05, 0b11111010, 0x00 ; BST
.db 0x05, 0b11111100, 0x00 ; SBRC
.db 0x05, 0b11111110, 0x00 ; SBRS
.db 0b11111000 ; BLD
.db 0b11111010 ; BST
.db 0b11111100 ; SBRC
.db 0b11111110 ; SBRS
; k(12): XXXXkkkk kkkkkkkk
.db 0x00, 0b11010000, 0x00 ; RCALL
.db 0x00, 0b11000000, 0x00 ; RJMP
.db 0b11010000 ; RCALL
.db 0b11000000 ; RJMP
; IN and OUT
.db 0x07, 0b10110000, 0x00 ; IN
.db 0x87, 0b10111000, 0x00 ; OUT (args reversed)
.db 0b10110000 ; IN
.db 0b10111000 ; OUT
; 16-bit constant masks associated with each instruction. In the same order as
; in instrNames
instrUpMasks2:
; no arg
.db 0x00, 0b10010101, 0b10011000 ; BREAK
.db 0x00, 0b10010100, 0b10001000 ; CLC
.db 0x00, 0b10010100, 0b11011000 ; CLH
.db 0x00, 0b10010100, 0b11111000 ; CLI
.db 0x00, 0b10010100, 0b10101000 ; CLN
.db 0x00, 0b10010100, 0b11001000 ; CLS
.db 0x00, 0b10010100, 0b11101000 ; CLT
.db 0x00, 0b10010100, 0b10111000 ; CLV
.db 0x00, 0b10010100, 0b10011000 ; CLZ
.db 0x00, 0b10010101, 0b00011001 ; EICALL
.db 0x00, 0b10010100, 0b00011001 ; EIJMP
.db 0x00, 0b10010101, 0b00001001 ; ICALL
.db 0x00, 0b10010100, 0b00001001 ; IJMP
.db 0x00, 0b00000000, 0b00000000 ; NOP
.db 0x00, 0b10010101, 0b00001000 ; RET
.db 0x00, 0b10010101, 0b00011000 ; RETI
.db 0x00, 0b10010100, 0b00001000 ; SEC
.db 0x00, 0b10010100, 0b01011000 ; SEH
.db 0x00, 0b10010100, 0b01111000 ; SEI
.db 0x00, 0b10010100, 0b00101000 ; SEN
.db 0x00, 0b10010100, 0b01001000 ; SES
.db 0x00, 0b10010100, 0b01101000 ; SET
.db 0x00, 0b10010100, 0b00111000 ; SEV
.db 0x00, 0b10010100, 0b00011000 ; SEZ
.db 0x00, 0b10010101, 0b10001000 ; SLEEP
.db 0x00, 0b10010101, 0b10101000 ; WDR
.db 0b10010101, 0b10011000 ; BREAK
.db 0b10010100, 0b10001000 ; CLC
.db 0b10010100, 0b11011000 ; CLH
.db 0b10010100, 0b11111000 ; CLI
.db 0b10010100, 0b10101000 ; CLN
.db 0b10010100, 0b11001000 ; CLS
.db 0b10010100, 0b11101000 ; CLT
.db 0b10010100, 0b10111000 ; CLV
.db 0b10010100, 0b10011000 ; CLZ
.db 0b10010101, 0b00011001 ; EICALL
.db 0b10010100, 0b00011001 ; EIJMP
.db 0b10010101, 0b00001001 ; ICALL
.db 0b10010100, 0b00001001 ; IJMP
.db 0b00000000, 0b00000000 ; NOP
.db 0b10010101, 0b00001000 ; RET
.db 0b10010101, 0b00011000 ; RETI
.db 0b10010100, 0b00001000 ; SEC
.db 0b10010100, 0b01011000 ; SEH
.db 0b10010100, 0b01111000 ; SEI
.db 0b10010100, 0b00101000 ; SEN
.db 0b10010100, 0b01001000 ; SES
.db 0b10010100, 0b01101000 ; SET
.db 0b10010100, 0b00111000 ; SEV
.db 0b10010100, 0b00011000 ; SEZ
.db 0b10010101, 0b10001000 ; SLEEP
.db 0b10010101, 0b10101000 ; WDR
; Rd(5): XXXXXXXd ddddXXXX
.db 0x01, 0b10010100, 0b00000101 ; ASR
.db 0x01, 0b10010100, 0b00000000 ; COM
.db 0x01, 0b10010100, 0b00001010 ; DEC
.db 0x01, 0b10010100, 0b00000011 ; INC
.db 0x01, 0b10010010, 0b00000110 ; LAC
.db 0x01, 0b10010010, 0b00000101 ; LAS
.db 0x01, 0b10010010, 0b00000111 ; LAT
.db 0x01, 0b10010100, 0b00000110 ; LSR
.db 0x01, 0b10010100, 0b00000001 ; NEG
.db 0x01, 0b10010000, 0b00001111 ; POP
.db 0x01, 0b10010010, 0b00001111 ; PUSH
.db 0x01, 0b10010100, 0b00000111 ; ROR
.db 0x01, 0b10010100, 0b00000010 ; SWAP
.db 0x01, 0b10010010, 0b00000100 ; XCH
.db 0b10010100, 0b00000101 ; ASR
.db 0b10010100, 0b00000000 ; COM
.db 0b10010100, 0b00001010 ; DEC
.db 0b10010100, 0b00000011 ; INC
.db 0b10010010, 0b00000110 ; LAC
.db 0b10010010, 0b00000101 ; LAS
.db 0b10010010, 0b00000111 ; LAT
.db 0b10010100, 0b00000110 ; LSR
.db 0b10010100, 0b00000001 ; NEG
.db 0b10010000, 0b00001111 ; POP
.db 0b10010010, 0b00001111 ; PUSH
.db 0b10010100, 0b00000111 ; ROR
.db 0b10010100, 0b00000010 ; SWAP
.db 0b10010010, 0b00000100 ; XCH
; Same signature as getInstID in instr.asm
; Reads string in (HL) and returns the corresponding ID (I_*) in A. Sets Z if
@ -247,55 +233,13 @@ getInstID:
; resulting opcode(s) in I/O.
; Sets Z on success. On error, A contains an error code (ERR_*)
parseInstruction:
; *** Step 1: initialization
; Except setting up our registers, we also check if our index < I_ADC.
; If we are, we skip regular processing for the .BR processing, which
; is a bit special.
; During this processing, BC is used as the "upcode WIP" register. It's
; there that we send our partial values until they're ready to spit to
; I/O.
; BC, during .spit, is ORred to the spitted opcode.
ld bc, 0
ld e, a ; Let's keep that instrID somewhere safe
; First, let's fetch our table row
; Save Instr ID in D, which is less volatile than A. In almost all
; cases, we fetch the opcode constant at the end of the processing.
ld d, a
cp I_ADC
jp c, .BR ; BR is special, no table row
; *** Step 2: parse arguments
sub I_ADC ; Adjust index for table
; Our row is at instrTbl + (A * 3)
ld hl, instrTbl
call addHL
sla a ; A * 2
call addHL ; (HL) is our row
ld a, (hl)
push hl \ pop ix ; IX is now our tblrow
ld hl, 0
or a
jr z, .noarg
and 0xf ; lower nibble
dec a ; argspec index is 1-based
ld hl, argSpecs
sla a ; A * 2
call addHL ; (HL) is argspec row
ld d, (hl)
inc hl
ld a, (hl)
ld h, d
ld l, a ; H and L contain specs now
bit 7, (ix)
call nz, .swapHL ; Bit 7 set, swap H and L
call _parseArgs
ret nz
.noarg:
; *** Step 3: place arguments in binary upcode and spit.
; (IX) is table row
; Parse arg values now in H and L
; InstrID is E
bit 7, (ix)
call nz, .swapHL ; Bit 7 set, swap H and L again!
bit 6, (ix)
call nz, .cpHintoL ; Bit 6 set, copy H into L
ld a, e ; InstrID
jp c, .BR
cp I_ANDI
jr c, .spitRd5Rr5
cp I_BLD
@ -304,15 +248,25 @@ parseInstruction:
jr c, .spitRdBit
cp I_IN
jr c, .spitK12
cp I_BREAK
jp c, .spitINOUT
jp z, .spitIN
cp I_OUT
jp z, .spitOUT
cp I_ASR
jp c, .spit ; no arg
jr c, .spitNoArg
; spitRd5
ld ix, argSpecs ; 'R', 0
call _parseArgs
ld a, h
call .placeRd
; continue to .spitNoArg
.spitNoArg:
call .getUp2
jp .spit
.spitRd5Rr5:
ld ix, argSpecs+2 ; 'R', 'R'
call _parseArgs
ret nz
ld a, h
call .placeRd
ld a, l
@ -327,9 +281,14 @@ parseInstruction:
rra \ rra \ rra
or b
ld b, a
call .getUp1
; now that's our MSB
jp .spitMSB
.spitRdK8:
ld ix, argSpecs+6 ; 'r', 8
call _parseArgs
ret nz
ld a, h ; Rd
call .placeRd
ld a, l ; K
@ -343,19 +302,25 @@ parseInstruction:
and 0xf0
rra \ rra \ rra \ rra
ld b, a
call .getUp1
jp .spitMSB
.spitRdBit:
ld ix, argSpecs+8 ; 'R', 'b'
call _parseArgs
ret nz
ld a, h
call .placeRd
or l
; LSB is in A and is ready to go
call ioPutB
call .getUp1
jr .spitMSB
.spitK12:
; Let's deal with the upcode constant before we destroy IX below
ld b, (ix+1)
; Let's deal with the upcode constant before we destroy DE below
call .getUp1
ld b, (hl)
call readWord
call parseExpr
ret nz
@ -382,6 +347,18 @@ parseInstruction:
or b
jp ioPutB
.spitOUT:
ld ix, argSpecs+12 ; 'A', 'R'
call _parseArgs
ret nz
ld a, h
ld h, l
ld l, a
jr .spitINOUT
.spitIN:
ld ix, argSpecs+14 ; 'R', 'A'
call _parseArgs
ret nz
.spitINOUT:
; Rd in H, A in L
ld a, h
@ -397,14 +374,18 @@ parseInstruction:
and 0b110
or b
ld b, a
; MSB is almost ready
call .getUp1
jr .spitMSB
.spit:
; LSB is spit *before* MSB
ld a, (ix+2)
inc hl
ld a, (hl)
or c
call ioPutB
dec hl
.spitMSB:
ld a, (ix+1)
ld a, (hl)
or b
call ioPutB
xor a ; ensure Z, set success
@ -429,8 +410,7 @@ parseInstruction:
.skip1:
and 0b111
ld c, a ; can't store in H now, (HL) is used
ld h, 7
ld l, 0
ld ix, argSpecs+4 ; 7, 0
call _parseArgs
ret nz
; ok, now we can
@ -456,8 +436,7 @@ parseInstruction:
; upcode becomes 0b111101
inc b
.rdBRBS:
ld h, 'b'
ld l, 7
ld ix, argSpecs+10 ; bit + k(7)
call _parseArgs
ret nz
; bit in H, k in L.
@ -472,15 +451,20 @@ parseInstruction:
ld c, a
ret
.swapHL:
ld a, h
ld h, l
ld l, a
ret
; Fetch a 8-bit upcode specified by instr index in D and set that upcode in HL
.getUp1:
ld a, d
sub I_ADC
ld hl, instrUpMasks1
jp addHL
.cpHintoL:
ld l, h
ret
; Fetch a 16-bit upcode specified by instr index in D and set that upcode in HL
.getUp2:
ld a, d
sub I_BREAK
sla a ; A * 2
ld hl, instrUpMasks2
jp addHL
; Argspecs: two bytes describing the arguments that are accepted. Possible
; values:
@ -505,11 +489,11 @@ argSpecs:
.db 'r', 8 ; Rd(4) + K(8)
.db 'R', 'b' ; Rd(5) + bit
.db 'b', 7 ; bit + k(7)
.db 'A', 'R' ; A(6) + Rr(5)
.db 'R', 'A' ; Rd(5) + A(6)
; Parse arguments from I/O according to specs in HL
; H for first spec, L for second spec
; Puts the results in HL
; Parse arguments in (HL) according to specs in IX
; Puts the results in HL (which is not needed anymore after the parsing).
; First arg in H, second in L.
; This routine is not used in all cases, some ops don't fit this pattern well
; and thus parse their args themselves.
@ -518,21 +502,20 @@ _parseArgs:
; For the duration of the routine, our final value will be in DE, and
; then placed in HL at the end.
push de
ex de, hl ; argspecs now in DE
call readWord
jr nz, .end
ld a, d
ld a, (ix)
call .parse
jr nz, .end
ld d, a
ld a, e
ld a, (ix+1)
or a
jr z, .end ; no arg
call readComma
jr nz, .end
call readWord
jr nz, .end
ld a, e
ld a, (ix+1)
call .parse
jr nz, .end
; we're done with (HL) now

View File

@ -25,7 +25,7 @@ main:
ori r16, 0x05 ; CS00 + CS02 = 1024 prescaler
out TCCR0B, r16
clr r1
;clr r1
loop:
in r16, TIFR ; TIFR0

View File

@ -1 +1 @@
å ¿à¿·`¿$·ýÐüÏà¿þ
å ¿à¿·`¿·ýÐüÏà¿þ