This allows a COS shell to remotely control another shell from a
serial line. It's very crude now, but the plan is to add tools much
like the POSIX tools, but for COS.
In the beginning of Collapse OS' Forth version, the readline sub-
system was optional. This is why we had this separate RDLN$ routine
and that the input buffer was allocated at boot time.
It's been a while since the RDLN system has been made mandatory, but
we still paid the complexity tax of this separation. Not anymore.
It's been a long while since I visited this part of the code and it
has become a bit messy after having gone through all evolutions of
the core code.
It is now simpler, more compact.
Previously, these words would be ascii emitters, but seldom used
except for the SPC emitter. However, I would often end up hardcoding
these constants. With useless emitters removed and ASCII constants
added, we have a more usable system.
Also, fix broken test harness.
Also, remove extraneous uses of it. In the rdln routine, we would
spit a new line after each line input, but that NL was spurious:
we already spit the newline we receive as it is typed.
The textual introduction of blk 0 was there when documentation was
inside the blkfs. Now that it's outside it, it serves no purpose:
you're expected to have read the documentation already before seeing
blk 0.
... and rename it to KEY?. Then, add KEY from KEY? for its blocking
version.
I need this for an upcoming Remote Shell feature. If a Collapse OS
system remotely controls another shell, it needs to be able to poll
both the remote system and the local keyboard at the same time. A
blocking KEY is incompatible with this.
In some places, the polling mechanism doesn't make sense, so this
new KEY? always returns a character. In some places, I just haven't
implemented the mechanism yet, so I kept the old blocking code and
added a "always 1" flag as a temporary shim.
I have probably broken something, but in emulators, Collapse OS runs
fine. It's an important reminder of what will be lost with the new
"dogfooding" approach (see recent mailing list message): without
emulators, it's much harder to to sweeping changes like this without
breaking stuff.
It's fine, I don't expect many more of these core changes to the
system. It's nearly feature-complete.
In emulation, emitting is near-immediate. On a real machine, it's
often not-so-near-immediate. These little things help usability.
Again, this commit was meta-developed!
On a TRS-80 4P, spitting control chars, in addition to being
visually distasteful, generated a bug where the blinking cursor
would disappear, making using VE much, much harder.
I had a hard time reproducing the bug: you don't trigger it by
simply spitting control chars, it had to be a specific number of
them in a specific order. I didn't identify the sequence, but I
know that "bufp" triggered it.
This commit was written on a TRS-80 4P and downloaded from my work
floppies!
A ~C! override can, if it wants, go put an error code in there,
which ~AT28 does.
This way, after a copy or xcomp process directly to EEPROM, one
can verify whether all bytes were successfully written by checking
whether "~C!ERR C@" is zero.
Also, turn AT28! and AT28, into ~AT28, pluggable into ~C!.
~AT28 doesn't check for mismatches. It was too complicated to turn
a mismatch into a compiled word we would jump to next. Data
integrity has to be checked through another path.
Also, remove MOVEW. Without indirect memory access, this word
doesn't make sense. Some AVR-specific words will have to be
defined.
I got bitten again, I've over-designed my solution. The last time
it happened, it was that memory mapping thing I was wanting to add.
The indirect memory access feature I was adding was to solve a
specific problem: Allow Collapse OS to cross-compile directly on a
AT28 EEPROM.
It began well. As long as we were staying in the assembler realm,
things were looking good. However, when we got into the xcomp realm
(B260), things became ugly, and I had to creep up indirection where
I didn't want to.
All of this because I wanted to solve my initial problem in a
slightly more generalized way. The broad idea was that these indirect
memory access could allow xcomp into a broad kind of memory-like
devices.
This idea broke on the "@" part of the equation. If I want
indirections to be two-way and allow xcomp to work properly, I have
to add this indirection to FIND (and possibly others) and this just
isn't practical or elegant.
So, I'm taking a step back and accepting that the solution I design
for now is exclusively for the AT28. What I'm thinking is to add a
low-level hook for memory writing, at the assembly level.
Also, rename "Addressed devices" to "Indirect memory access".
I do this because I need to add indirect versions of !, @ and ,
to allow boostrapping directly to EEPROM and that A,, thing I've
added to assemblers felt like really bad names.
With this change, I'd like to generalize the use of the * suffix
for aliases.
This word, suitable to plug to A, , increases HERE before doing its
verification to minimize waiting time: While we increase HERE, the
AT28 has the time to do its programming, and thus we'll need to idle
for less time afterwards.
Also, made the mismatch check silently ignore MSB. Previously, writing
a value larger than 0xff with AT28! would always result in a mismatch.
This brings us a bit closer to TYPE from Forth 2012. I don't think
I'll add TYPE (sig "addr len") anytime soon because there is few
use cases for it, but having "STYPE" instead of "(print)" feels
cleaner.
At-XY+EMIT is slow compared to direct CELL! usage. It is seen very
clearly on a SMS when VE is doing its initial clrscr (yes, I could
manage to load VE from a SD card and run it on a real SMS!).
The grid protocol wasn't there when I wrote VE initially. I only had
AT-XY. Now that we have a solid protocol to build on, let's do it.
In CURSOR!, I was using a write commande to read from VRAM and the
emulator didn't properly behave and did as if everything was fine.
The result on a real SMS was that the cursor would contain the
inverted glyph of the contents of the *old* cursor position.
I do this by adding an inverted version of all glyphs in the upper
range of the pattern memory. This is a big waste of the pattern
space (only one inverted character is needed at once), but it's the
simplest way to proceed. I'll change this if I ever need more
pattern space.
Also, remove _blank. It was wastefully blanking the whole memory.
Only the name table needs to be blanked on initialization.
Replace the "g" arg (glyph) with "c" (character). The reason why "g"
was used was to save a "0x20 -" operation at all CELL! implementations,
but this came with too big a drawback: it made CELL! hardly usable
outside of the Grid subsystem, mostly because the user of CELL! would
often have to do "0x20 -".
For example, I want the SMS's Pad driver to use CELL! directly instead
of having to do EMIT+XYPOS-messing-around. I would have had to do a
"0x20 -" there.
With the move of CVM's forth to the grid protocol, we've lost the
cursor's visual indication. Now, we have it back.
The challenge now is in implementing it in SMS' text mode. In mode
4, it's easy to mark a cell as inverted, but in text mode, that's
not possible.
In VE on the SMS, the first contents line would always be cleared
because of NEWLN being called when the FBUF would spit its last
char. Inconvenient...
I've added a "graphical" mode to the grid subsystem to inhibit this
behavior in a graphical situation such as in VE.
Also, write a more complete Grid documentation.
Working in "blk/" folder from a modern system is harder than it
should be. Moving blocks around is a bit awkward, grepping is a
bit less convenient than it could be, git blame has troubles
following, etc.
In this commit, we modify blkpack and blkunpack to work with single
text files with blocks being separated by a special markup.
I think this will make the code significantly more convenient to
work into.