Instead of going left and right, finding operators chars and replacing them
with nulls, we parse expressions in a more orderly manner, one chunk at a
time. I think it qualifies as "recursive descent", but I'm not sure.
This allows us to preserve the string we parse and should also make the
implementation of parens much easier.
This should make tests a bit more convenient to write and debug.
Moreover, begin de de-IX-ization of parseExpr. I have, in a local WIP, a
parseExpr implemented using a recursive descent algo, it passes all tests, but
it unfortunately assembles a faulty zasm. I have to find the expressions that
it doesn't parse properly.
But before I do that, I prefer to commit these significant improvements I've
been making to tests harness in parallel of this development.
That's my mega-commit you've all been waiting for.
The code for the shell share more routines with userspace apps than with kernel
units, because, well, its behavior is that of a userspace app, not a device
driver.
This created a weird situation with libraries and jump tables. Some routine
belonging to the `kernel/` directory felt weird there.
And then comes `apps/basic`, which will likely share even more code with the
shell. I was seeing myself creating huge jump tables to reuse code from the
shell. It didn't feel right.
Moreover, we'll probably want basic-like apps to optionnally replace the shell.
So here I am with this huge change in the project structure. I didn't test all
recipes on hardware yet, I will do later. I might have broken some...
But now, the structure feels better and the line between what belongs to
`kernel` and what belongs to `apps` feels clearer.
Most of register fiddling routines (which is now the only thing contained
in care.asm) are used by almost all userspace apps, often in inner loops.
That makes the penalty of using jump tables for those a bit too high.
Moreover, it burdens jump tables needlessly.
Because this unit is very small (now that string routines are out), it makes
sense to always include it in binaries.