Now instead of skipping leading zeroes, the first digit is loaded directly into hl without first multiplying by 10. This means the first loop is skipped in the overhead, making the method 2-3 times faster overall, and is now faster for the more common fewer digit cases too. The number of bytes is exactly the same, and the inner loop is slightly faster too thanks to no longer needing to load a into c.
To be more precise about the speed increase over the current code, for decimals of length 1 it'll be 3.18x faster, for decimals of length 2, 2.50x faster, for length 3, 2.31x faster, for length 4, 2.22x faster, and for length 5 and above, at least 2.03x faster. In terms of cycles, this is around 100+(132*length) cycles saved per decimal.
Totally reworked both parseDecimal and parseDecimalDigit
parseDecimalDigit no longer exists, as it could be replaced by an inline alternative in the 4 places it appeared. This saves one byte overall, as the inline version is 4 bytes, 1 byte more than a call, and removing the function saved 5 bytes. It has been reduced from between 52 and 35 cycles (35 on error, so we'd expect 52 cycles to be more common unless someone's really bad at programming) to 14 cycles, so 2-3 times faster.
parseDecimal has been reduced by a byte, and now the main loop is just about twice as fast, but with increased overhead. To put this into perspective, if we ignore error cases:
For decimals of length 1 it'll be 1.20x faster, for decimals of length 2, 1.41x faster, for length 3, 1.51x faster, for length 4, 1.57x faster, and for length 5 and above, at least 1.48x faster (even faster if there's leading zeroes or not the worst case scenario).
I believe there is still room for improvement, since the first iteration can be nearly replaced with "ld l, c" since 0*10=0, but when I tried this I could either add a zero check into the main loop, adding around 40 cycles and 10 bytes, or add 20 bytes to the overhead, and I don't think either of those options are worth it.
I've tested RAM usage when self-assembling and there weren't as high
as I thought. zasm's defaults now use less than 0x1800 bytes of RAM,
making it possible, theoretically for now, for a Sega Master System
to assemble Collapse OS from within itself.
Yup, that's ultimately why I've just made this whole big zasm
refactoring in the previous commits. To allow for this.
But also, zasm is in much better shape now...
I'm about to split the global registry in two (labels and consts)
and the previous state of registry selection made things murky.
Now it's much better.
The dual scraptchpad thing doesn't work. Things become very
complicated when it's time to write that back to the file. We
overwrite our contents and end up with garbage.
This hard-binds ed to the filesystem (I liked the idea of working
only with blockdevs though...), but this is necessary for the
upcoming `w` command. We need some kind of way to tell the
destination to write to truncate itself.
This only has a meaning in the filesystem, but it's necessary to
let the file know that its registered file size has possibly
shrunk.
I thought of alternatives that would have allowed me to keep ed
blkdev-centered, but they were all too hackish to my own taste.
Hence, this new hard-bind on files.
During expression parsing, if a local label was parsed, it would
select the local registry and keep that selection, making
subsequent global labels register in the wrong place.