1
0
mirror of https://github.com/hsoft/collapseos.git synced 2024-11-27 16:48:05 +11:00
collapseos/recipes/rc2014/sdcard
Virgil Dupras 7c20501f27 Move core's blk to xcomp core (low and high)
TODO: implement X['] so that I can remove those XCURRENT patterns.
2020-05-13 10:50:46 -04:00
..
cfsin recipes/rc2014/sdcard: use "sdci" and blockdev rather than user prog 2019-05-28 11:01:17 -04:00
spirelay recipe/rc2014/sdcard: new recipe 2019-05-07 15:47:49 -04:00
.gitignore recipes/rc2014/sdcard: mount filesystem! 2019-05-28 13:13:34 -04:00
README.md Move core's blk to xcomp core (low and high) 2020-05-13 10:50:46 -04:00

Accessing a MicroSD card

SD cards are great because they are accessible directly. No supporting IC is necessary. The easiest way to access them is through the SPI protocol.

Due to the way IO works in z80, implementing SPI through it as a bit awkward: You can't really keep pins high and low on an IO line. You need some kind of intermediary between z80 IOs and SPI.

There are many ways to achieve this. This recipe explains how to build your own hacked off SPI relay for the RC2014. It can then be used with sdc.fs to drive a SD card.

Goal

Read and write to a SD card from Collapse OS using a SPI relay of our own design.

Gathering parts

  • A RC2014 Classic
  • A MicroSD breakout board. I use Adafruit's.
  • A proto board + header pins with 39 positions so we can make a RC2014 card.
  • Diodes, resistors and stuff
  • 40106 (Inverter gates)
  • 4011 (NAND gates)
  • 74xx139 (Decoder)
  • 74xx161 (Binary counter)
  • 74xx165 (Parallel input shift register)
  • 74xx595 (Shift register)

Building the SPI relay

The schematic supplied with this recipe works well with sdc.fs. Of course, it's not the only possible design that works, but I think it's one of the most straighforwards.

The basic idea with this relay is to have one shift register used as input, loaded in parallel mode from the z80 bus and a shift register that takes the serial input from MISO and has its output wired to the z80 bus.

These two shift registers are clocked by a binary counter that clocks exactly 8 times whenever a write operation on port 4 occurs. Those 8 clocks send data we've just received in the 74xx165 into MOSI and get MISO into the 74xx595.

The 74xx139 then takes care of activating the right ICs on the right combinations of IORQ/WR/RD/Axx.

The rest of the ICs is fluff around this all.

My first idea was to implement the relay with an AVR microcontroller to minimize the number of ICs, but it's too slow. We have to be able to respond within 300ns! Following that, it became necessary to add a 595 and a 165, but if we're going to add that, why not go the extra mile and get rid of the microcontroller?

To that end, I was heavily inspired by this design.

This board uses port 4 for SPI data, port 5 to pull CS low and port 6 to pull it high. Port 7 is unused but monopolized by the card.

Little advice: If you make your own design, double check propagation delays! Some NAND gates, such as the 4093, are too slow to properly respond within a 300ns limit. For example, in my own prototype, I use a 4093 because that's what I have in inventory. For the CS flip-flop, the propagation delay doesn't matter. However, it does matter for the SELECT line, so I don't follow my own schematic with regards to the M1 and A2 lines and use two inverters instead.

Building your binary

Your Collapse OS binary needs the SDC drivers which need to be inserted during Cross Compilation, which needs you need to recompile it from stage 1. First, look at B370. You'll see that it indicates a block range for the driver. That needs to be loaded.

Open xcomp.fs from base recipe and locate acia loading. You'll insert a line right after that that will look like:

372 387 LOADR  ( sdc )

Normally, that's all you need to do. However, you have a little problem: You're busting the 8K ROM limit. But it's ok, you can remove the linker's XPACKing line: because you'll have access to the blkfs from SD card, you can load it from there!

Removing the linker from XPACKing will free enough space for your binary to fit in 8K. You also have to add BLK$ to initialization routine.

Build it and write it to EEPROM.

If you want, once you're all set with the SD card, you can relink core words like you did in the base recipe for optimal resource usage.

Testing in the emulator

The RC2014 emulator includes SDC emulation. You can attach a SD card image to it by invoking it with a second argument:

../../../emul/hw/rc2014/classic stage3.bin ../../../emul/blkfs

You will then run with a SD card having the contents from /blk.

Usage

First, the SD card needs to be initialized

SDC$

If there is no error message, we're fine. Then, we need to hook BLK@* and BLK!* into the SDC driver:

' SDC@ BLK@* !
' SDC! BLK!* !

And thats it! You have full access to disk block mechanism:

102 LOAD
BROWSE

(at this moment, the driver is a bit slow though...)

How do I fill my SD card with Collapse OS' FS?

Very easy. You see that /emul/blkfs file? You dump it to your raw device. For example, if the device you get when you insert your SD card is /dev/sdb, then you type cat emul/blkfs | sudo tee /dev/sdb > /dev/null.