1
0
mirror of https://github.com/hsoft/collapseos.git synced 2024-12-05 06:28:06 +11:00
collapseos/apps/zasm/zasm.asm
Virgil Dupras b4694225c5 blockdev: change GetC API
Instead of waiting, GetC always return immediately, with Z indicating if
something was fetched. The "wait" loop is implemented by the called (and
in the new `blkGetCW`).

This simplifies out-of-bounds verifications for storage blockdevs.
2019-04-22 14:26:16 -04:00

1082 lines
27 KiB
NASM

#include "user.inc"
; *** Consts ***
; Number of rows in the argspec table
ARGSPEC_TBL_CNT .equ 31
; Number of rows in the primary instructions table
INSTR_TBL_CNT .equ 135
; size in bytes of each row in the primary instructions table
INSTR_TBL_ROWSIZE .equ 9
; *** Code ***
.org USER_CODE
call parseLine
ld b, 0
ld c, a ; written bytes
ld hl, curUpcode
call copy
ret
#include "tok.asm"
; TODO: call from core
unsetZ:
push bc
ld b, a
inc b
cp b
pop bc
ret
; run RLA the number of times specified in B
rlaX:
; first, see if B == 0 to see if we need to bail out
inc b
dec b
ret z ; Z flag means we had B = 0
.loop: rla
djnz .loop
ret
; Copy BC bytes from (HL) to (DE).
copy:
; first, let's see if BC is zero. if it is, we have nothing to do.
; remember: 16-bit inc/dec don't modify flags. that's why we check B
; and C separately.
inc b
dec b
jr nz, .proceed
inc c
dec c
ret z ; zero? nothing to do
.proceed:
push bc
push de
push hl
ldir
pop hl
pop de
pop bc
ret
callHL:
jp (hl)
ret
; If string at (HL) starts with ( and ends with ), "enter" into the parens
; (advance HL and put a null char at the end of the string) and set Z.
; Otherwise, do nothing and reset Z.
enterParens:
ld a, (hl)
cp '('
ret nz ; nothing to do
push hl
ld a, 0 ; look for null char
; advance until we get null
.loop:
cpi
jp z, .found
jr .loop
.found:
dec hl ; cpi over-advances. go back to null-char
dec hl ; looking at the last char before null
ld a, (hl)
cp ')'
jr nz, .doNotEnter
; We have parens. While we're here, let's put a null
xor a
ld (hl), a
pop hl ; back at the beginning. Let's advance.
inc hl
cp a ; ensure Z
ret ; we're good!
.doNotEnter:
pop hl
call unsetZ
ret
; Checks whether A is 'N' or 'M'
checkNOrM:
cp 'N'
ret z
cp 'M'
ret
; Checks whether A is 'n', 'm', 'x' or 'y'
checknmxy:
cp 'n'
ret z
cp 'm'
ret z
cp 'x'
ret z
cp 'y'
ret
; Parse the decimal char at A and extract it's 0-9 numerical value. Put the
; result in A.
;
; On success, the carry flag is reset. On error, it is set.
parseDecimal:
; First, let's see if we have an easy 0-9 case
cp '0'
ret c ; if < '0', we have a problem
cp '9'+1
; We are in the 0-9 range
sub a, '0' ; C is clear
ret
; Parses the string at (HL) and returns the 16-bit value in IX.
; As soon as the number doesn't fit 16-bit any more, parsing stops and the
; number is invalid. If the number is valid, Z is set, otherwise, unset.
parseNumber:
push hl
push de
push bc
ld ix, 0
.loop:
ld a, (hl)
cp 0
jr z, .end ; success!
call parseDecimal
jr c, .error
; Now, let's add A to IX. First, multiply by 10.
ld d, ixh ; we need a copy of the initial copy for later
ld e, ixl
add ix, ix ; x2
add ix, ix ; x4
add ix, ix ; x8
add ix, de ; x9
add ix, de ; x10
add a, ixl
jr nc, .nocarry
inc ixh
.nocarry:
ld ixl, a
; We didn't bother checking for the C flag at each step because we
; check for overflow afterwards. If ixh < d, we overflowed
ld a, ixh
cp d
jr c, .error ; carry is set? overflow
inc hl
jr .loop
.error:
call unsetZ
.end:
pop bc
pop de
pop hl
ret
; Parse the string at (HL) and check if it starts with IX+, IY+, IX- or IY-.
; Sets Z if yes, unset if no.
parseIXY:
push hl
ld a, (hl)
cp 'I'
jr nz, .end ; Z already unset
inc hl
ld a, (hl)
cp 'X'
jr z, .match1
cp 'Y'
jr z, .match1
jr .end ; Z already unset
.match1:
; Alright, we have IX or IY. Let's see if we have + or - next.
inc hl
ld a, (hl)
cp '+'
jr z, .end ; Z is already set
cp '-'
; The value of Z at this point is our final result
.end:
pop hl
ret
; Returns length of string at (HL) in A.
strlen:
push bc
push hl
ld bc, 0
ld a, 0 ; look for null char
.loop:
cpi
jp z, .found
jr .loop
.found:
; How many char do we have? the (NEG BC)-1, which started at 0 and
; decreased at each CPI call. In this routine, we stay in the 8-bit
; realm, so C only.
ld a, c
neg
dec a
pop hl
pop bc
ret
; find argspec for string at (HL). Returns matching argspec in A.
; Return value 0xff holds a special meaning: arg is not empty, but doesn't match
; any argspec (A == 0 means arg is empty). A return value of 0xff means an
; error.
;
; If the parsed argument is a number constant, 'N' is returned and IX contains
; the value of that constant.
parseArg:
call strlen
cp 0
ret z ; empty string? A already has our result: 0
push bc
push de
push hl
; We always initialize IX to zero so that non-numerical args end up with
; a clean zero.
ld ix, 0
ld de, argspecTbl
; DE now points the the "argspec char" part of the entry, but what
; we're comparing in the loop is the string next to it. Let's offset
; DE by one so that the loop goes through strings.
inc de
ld b, ARGSPEC_TBL_CNT
.loop1:
ld a, 4
call JUMP_STRNCMP
jr z, .found ; got it!
ld a, 5
call JUMP_ADDDE
djnz .loop1
; We exhausted the argspecs. Let's see if we're inside parens.
call enterParens
jr z, .withParens
; (HL) has no parens
call parseNumber
jr nz, .nomatch
; We have a proper number in no parens. Number in IX.
ld a, 'N'
jr .end
.withParens:
ld c, 'M' ; C holds the argspec type until we reach
; .numberInParens
; We have parens. First, let's see if we have a (IX+d) type of arg.
call parseIXY
jr nz, .parseNumberInParens ; not I{X,Y}. just parse number.
; We have IX+/IY+/IX-/IY-.
; note: the "-" part isn't supported yet.
inc hl ; (HL) now points to X or Y
ld a, (hl)
inc hl ; advance HL to the number part
inc hl ; this is the number
cp 'Y'
jr nz, .notY
ld c, 'y'
jr .parseNumberInParens
.notY:
ld c, 'x'
.parseNumberInParens:
call parseNumber
jr nz, .nomatch
; We have a proper number in parens. Number in IX
ld a, c ; M, x, or y
jr .end
.nomatch:
; We get no match
ld a, 0xff
jr .end
.found:
; found the matching argspec row. Our result is one byte left of DE.
dec de
ld a, (de)
.end:
pop hl
pop de
pop bc
ret
; Returns, with Z, whether A is a groupId
isGroupId:
cp 0xc ; max group id + 1
jr nc, .notgroup ; >= 0xc? not a group
cp 0
jr z, .notgroup ; 0? not supposed to happen. something's wrong.
; A is a group. ensure Z is set
cp a
ret
.notgroup:
call unsetZ
ret
; Find argspec A in group id H.
; Set Z according to whether we found the argspec
; If found, the value in A is the argspec value in the group (its index).
findInGroup:
push bc
push hl
cp 0 ; is our arg empty? If yes, we have nothing to do
jr z, .notfound
push af
ld a, h
cp 0xa
jr z, .specialGroupCC
cp 0xb
jr z, .specialGroupABCDEHL
jr nc, .notfound ; > 0xb? not a group
pop af
; regular group
push de
ld de, argGrpTbl
; group ids start at 1. decrease it, then multiply by 4 to have a
; proper offset in argGrpTbl
dec h
push af
ld a, h
rla
rla
call JUMP_ADDDE ; At this point, DE points to our group
pop af
ex hl, de ; And now, HL points to the group
pop de
ld bc, 4
jr .find
.specialGroupCC:
ld hl, argGrpCC
jr .specialGroupEnd
.specialGroupABCDEHL:
ld hl, argGrpABCDEHL
.specialGroupEnd:
pop af ; from the push af just before the special group check
ld bc, 8
.find:
; This part is common to regular and special group. We expect HL to
; point to the group and BC to contain its length.
push bc ; save the start value loop index so we can sub
.loop:
cpi
jr z, .found
jp po, .notfound
jr .loop
.found:
; we found our result! Now, what we want to put in A is the index of
; the found argspec.
pop hl ; we pop from the "push bc" above. L is now 4 or 8
ld a, l
sub c
dec a ; cpi DECs BC even when there's a match, so C == the
; number of iterations we've made. But our index is
; zero-based (1 iteration == 0 index).
cp a ; ensure Z is set
jr .end
.notfound:
pop bc ; from the push bc in .find
call unsetZ
.end:
pop hl
pop bc
ret
; Compare argspec from instruction table in A with argument in (HL).
; For constant args, it's easy: if A == (HL), it's a success.
; If it's not this, then we check if it's a numerical arg.
; If A is a group ID, we do something else: we check that (HL) exists in the
; groupspec (argGrpTbl). Moreover, we go and write the group's "value" (index)
; in (HL+1). This will save us significant processing later in getUpcode.
; Set Z according to whether we match or not.
matchArg:
cp a, (hl)
ret z
; not an exact match. Before we continue: is A zero? Because if it is,
; we have to stop right here: no match possible.
cp 0
jr nz, .checkIfNumber ; not a zero, we can continue
; zero, stop here
call unsetZ
ret
.checkIfNumber:
; not an exact match, let's check for numerical constants.
call JUMP_UPCASE
call checkNOrM
jr z, .expectsNumber
jr .notNumber
.expectsNumber:
; Our argument is a number N or M. Never a lower-case version. At this
; point in the processing, we don't care about whether N or M is upper,
; we do truncation tests later. So, let's just perform the same == test
; but in a case-insensitive way instead
cp a, (hl)
ret ; whether we match or not, the result of Z is
; the good one.
.notNumber:
; A bit of a delicate situation here: we want A to go in H but also
; (HL) to go in A. If not careful, we overwrite each other. EXX is
; necessary to avoid invoving other registers.
push hl
exx
ld h, a
push hl
exx
ld a, (hl)
pop hl
call findInGroup
pop hl
ret nz
; we found our group? let's write down its "value" in (HL+1). We hold
; this value in A at the moment.
inc hl
ld (hl), a
dec hl
ret
; Compare primary row at (DE) with string at tokInstr. Sets Z flag if there's a
; match, reset if not.
matchPrimaryRow:
push hl
push ix
ld hl, tokInstr
ld a, 4
call JUMP_STRNCMP
jr nz, .end
; name matches, let's see the rest
ld ixh, d
ld ixl, e
ld hl, curArg1
ld a, (ix+4)
call matchArg
jr nz, .end
ld hl, curArg2
ld a, (ix+5)
call matchArg
.end:
pop ix
pop hl
ret
; *** Special opcodes ***
; The special upcode handling routines below all have the same signature.
; Instruction row is at IX and we're expected to perform the same task as
; getUpcode. The number of bytes, however, must go in C instead of A
; No need to preserve HL, DE, BC and IX: it's handled by getUpcode already.
; Handle like a regular "JP (IX+d)" except that we refuse any displacement: if
; a displacement is specified, we error out.
handleJPIX:
ld a, 0xdd
jr handleJPIXY
handleJPIY:
ld a, 0xfd
handleJPIXY:
ld (curUpcode), a
ld a, (curArg1+1)
cp 0 ; numerical argument *must* be zero
jr nz, .error
; ok, we're good
ld a, 0xe9 ; second upcode
ld (curUpcode+1), a
ld c, 2
ret
.error:
xor c
ret
; Handle the first argument of BIT. Sets Z if first argument is valid, unset it
; if there's an error.
handleBIT:
ld a, (curArg1+1)
cp 8
jr nc, .error ; >= 8? error
; We're good
cp a ; ensure Z
ret
.error:
xor c
call unsetZ
ret
handleBITHL:
call handleBIT
ret nz ; error
ld a, 0xcb ; first upcode
ld (curUpcode), a
ld a, (curArg1+1) ; 0-7
ld b, 3 ; displacement
call rlaX
or 0b01000110 ; 2nd upcode
ld (curUpcode+1), a
ld c, 2
ret
handleBITIX:
ld a, 0xdd
jr handleBITIXY
handleBITIY:
ld a, 0xfd
handleBITIXY:
ld (curUpcode), a ; first upcode
call handleBIT
ret nz ; error
ld a, 0xcb ; 2nd upcode
ld (curUpcode+1), a
ld a, (curArg2+1) ; IXY displacement
ld (curUpcode+2), a
ld a, (curArg1+1) ; 0-7
ld b, 3 ; displacement
call rlaX
or 0b01000110 ; 4th upcode
ld (curUpcode+3), a
ld c, 4
ret
handleBITR:
call handleBIT
ret nz ; error
; get group value
ld a, (curArg2+1) ; group value
ld c, a
; write first upcode
ld a, 0xcb ; first upcode
ld (curUpcode), a
; get bit value
ld a, (curArg1+1) ; 0-7
ld b, 3 ; displacement
call rlaX
; Now we have group value in stack, bit value in A (properly shifted)
; and we want to OR them together
or c ; Now we have our ORed value
or 0b01000000 ; and with the constant value for that byte...
; we're good!
ld (curUpcode+1), a
ld c, 2
ret
handleIM:
ld a, (curArg1+1)
cp 0
jr z, .im0
cp 1
jr z, .im1
cp 2
jr z, .im2
; error
ld c, 0
ret
.im0:
ld a, 0x46
jr .proceed
.im1:
ld a, 0x56
jr .proceed
.im2:
ld a, 0x5e
.proceed:
ld (curUpcode+1), a
ld a, 0xed
ld (curUpcode), a
ld c, 2
ret
handleLDIXn:
ld a, 0xdd
jr handleLDIXYn
handleLDIYn:
ld a, 0xfd
handleLDIXYn:
ld (curUpcode), a
ld a, 0x36 ; second upcode
ld (curUpcode+1), a
ld a, (curArg1+1) ; IXY displacement
ld (curUpcode+2), a
ld a, (curArg2+1) ; N
ld (curUpcode+3), a
ld c, 4
ret
.error:
xor c
ret
handleLDIXr:
ld a, 0xdd
jr handleLDIXYr
handleLDIYr:
ld a, 0xfd
handleLDIXYr:
ld (curUpcode), a
ld a, (curArg2+1) ; group value
or 0b01110000 ; second upcode
ld (curUpcode+1), a
ld a, (curArg1+1) ; IXY displacement
ld (curUpcode+2), a
ld c, 3
ret
.error:
xor c
ret
; Compute the upcode for argspec row at (DE) and arguments in curArg{1,2} and
; writes the resulting upcode in curUpcode. A is the number if bytes written
; to curUpcode (can be zero if something went wrong).
getUpcode:
push ix
push de
push hl
push bc
; First, let's go in IX mode. It's easier to deal with offsets here.
ld ixh, d
ld ixl, e
; Are we a "special instruction"?
bit 5, (ix+6)
jr z, .normalInstr ; not set: normal instruction
; We are a special instruction. Fetch handler (little endian, remember).
ld l, (ix+7)
ld h, (ix+8)
call callHL
; We have our result written in curUpcode and C is set.
jp .end
.normalInstr:
; we begin by writing our "base upcode", which can be one or two bytes
ld a, (ix+7) ; first upcode
ld (curUpcode), a
ld de, curUpcode ; from this point, DE points to "where we are"
; in terms of upcode writing.
inc de ; make DE point to where we should write next.
ld a, (ix+8) ; second upcode
cp 0 ; do we have a second upcode?
jr z, .onlyOneUpcode
; we have two upcodes
ld (de), a
inc de
.onlyOneUpcode:
; now, let's see if we're dealing with a group here
ld a, (ix+4) ; first argspec
call isGroupId
jr z, .firstArgIsGroup
; First arg not a group. Maybe second is?
ld a, (ix+5) ; 2nd argspec
call isGroupId
jr nz, .writeExtraBytes ; not a group? nothing to do. go to
; next step: write extra bytes
; Second arg is group
ld hl, curArg2
jr .isGroup
.firstArgIsGroup:
ld hl, curArg1
.isGroup:
; A is a group, good, now let's get its value. HL is pointing to
; the argument. Our group value is at (HL+1).
inc hl
ld a, (hl)
; Now, we have our arg "group value" in A. Were going to need to
; displace it left by the number of steps specified in the table.
push af
ld a, (ix+6) ; displacement bit
and a, 0xf ; we only use the lower nibble.
ld b, a
pop af
call rlaX
; At this point, we have a properly displaced value in A. We'll want
; to OR it with the opcode.
; However, we first have to verify whether this ORing takes place on
; the second upcode or the first.
bit 6, (ix+6)
jr z, .firstUpcode ; not set: first upcode
or (ix+8) ; second upcode
ld (curUpcode+1), a
jr .writeExtraBytes
.firstUpcode:
or (ix+7) ; first upcode
ld (curUpcode), a
jr .writeExtraBytes
.writeExtraBytes:
; Good, we are probably finished here for many primary opcodes. However,
; some primary opcodes take 8 or 16 bit constants as an argument and
; if that's the case here, we need to write it too.
; We still have our instruction row in IX and we have DE pointing to
; where we should write next (which could be the second or the third
; byte of curUpcode).
ld a, (ix+4) ; first argspec
ld hl, curArg1
call checkNOrM
jr z, .withWord
call checknmxy
jr z, .withByte
ld a, (ix+5) ; second argspec
ld hl, curArg2
call checkNOrM
jr z, .withWord
call checknmxy
jr z, .withByte
; nope, no number, alright, we're finished here
ld c, 1
jr .computeBytesWritten
.withByte:
; verify that the MSB in argument is zero
inc hl
inc hl ; MSB is 2nd byte
ld a, (hl)
dec hl ; HL now points to LSB
cp 0
jr nz, .numberTruncated
; HL points to our number
; one last thing to check. Is the 7th bit on the displacement value set?
; if yes, we have to decrease our value by 2. Uses for djnz and jr.
bit 7, (ix+6)
jr z, .skipDecrease
; Yup, it's set.
dec (hl)
dec (hl)
.skipDecrease:
ldi
ld c, 2
jr .computeBytesWritten
.withWord:
inc hl ; HL now points to LSB
; Clear to proceed. HL already points to our number
ldi ; LSB written, we point to MSB now
ldi ; MSB written
ld c, 3
jr .computeBytesWritten
.computeBytesWritten:
; At this point, everything that we needed to write in curUpcode is
; written an C is 1 if we have no extra byte, 2 if we have an extra
; byte and 3 if we have an extra word. What we need to do here is check
; if ix+8 is non-zero and increase C if it is.
ld a, (ix+8)
cp 0
jr z, .end ; no second upcode? nothing to do.
; We have 2 base upcodes
inc c
jr .end
.numberTruncated:
; problem: not zero, so value is truncated. error
xor c
.end:
ld a, c
pop bc
pop hl
pop de
pop ix
ret
; Parse tokenizes argument in (HL), parses it and place it in (DE)
; Sets Z on success, reset on error.
processArg:
call parseArg
cp 0xff
jr z, .error
ld (de), a
; When A is a number, IX is set with the value of that number. Because
; We don't use the space allocated to store those numbers in any other
; occasion, we store IX there unconditonally, LSB first.
inc de
ld a, ixl
ld (de), a
inc de
ld a, ixh
ld (de), a
cp a ; ensure Z is set
ret
.error:
call unsetZ
ret
; Parse line at (HL) and write resulting opcode(s) in curUpcode. Returns the
; number of bytes written in A.
parseLine:
push hl
push de
call tokenize
jr nz, .error
ld a, (tokInstr)
cp 0
jr z, .error ; for now, we treat blank lines as errors
ld hl, tokArg1
ld de, curArg1
call processArg
jr nz, .error
ld hl, tokArg2
ld de, curArg2
call processArg
jr nz, .error
; Parsing done, no error, let's move forward to instr row matching!
ld de, instrTBl
ld b, INSTR_TBL_CNT
.loop:
ld a, (de)
call matchPrimaryRow
jr z, .match
ld a, INSTR_TBL_ROWSIZE
call JUMP_ADDDE
djnz .loop
; no match
xor a
jr .end
.match:
; We have our matching instruction row. We're getting pretty near our
; goal here!
call getUpcode
jr .end
.error:
xor a
.end:
pop de
pop hl
ret
; In instruction metadata below, argument types arge indicated with a single
; char mnemonic that is called "argspec". This is the table of correspondance.
; Single letters are represented by themselves, so we don't need as much
; metadata.
; Special meaning:
; 0 : no arg
; 1-10 : group id (see Groups section)
; 0xff: error
; Format: 1 byte argspec + 4 chars string
argspecTbl:
.db 'A', "A", 0, 0, 0
.db 'B', "B", 0, 0, 0
.db 'C', "C", 0, 0, 0
.db 'k', "(C)", 0
.db 'D', "D", 0, 0, 0
.db 'E', "E", 0, 0, 0
.db 'H', "H", 0, 0, 0
.db 'L', "L", 0, 0, 0
.db 'I', "I", 0, 0, 0
.db 'R', "R", 0, 0, 0
.db 'h', "HL", 0, 0
.db 'l', "(HL)"
.db 'd', "DE", 0, 0
.db 'e', "(DE)"
.db 'b', "BC", 0, 0
.db 'c', "(BC)"
.db 'a', "AF", 0, 0
.db 'f', "AF'", 0
.db 'X', "IX", 0, 0
.db 'Y', "IY", 0, 0
.db 'x', "(IX)" ; always come with displacement
.db 'y', "(IY)" ; with JP
.db 's', "SP", 0, 0
.db 'p', "(SP)"
; we also need argspecs for the condition flags
.db 'Z', "Z", 0, 0, 0
.db 'z', "NZ", 0, 0
; C is in conflict with the C register. The situation is ambiguous, but
; doesn't cause actual problems.
.db '=', "NC", 0, 0
.db '+', "P", 0, 0, 0
.db '-', "M", 0, 0, 0
.db '1', "PO", 0, 0
.db '2', "PE", 0, 0
; argspecs not in the list:
; n -> N
; N -> NN
; m -> (N) (running out of mnemonics. 'm' for 'memory pointer')
; M -> (NN)
; Groups
; Groups are specified by strings of argspecs. To facilitate jumping to them,
; we have a fixed-sized table. Because most of them are 2 or 4 bytes long, we
; have a table that is 4 in size to minimize consumed space. We treat the two
; groups that take 8 bytes in a special way.
;
; The table below is in order, starting with group 0x01
argGrpTbl:
.db "bdha" ; 0x01
.db "ZzC=" ; 0x02
.db "bdhs" ; 0x03
.db "bdXs" ; 0x04
.db "bdYs" ; 0x05
argGrpCC:
.db "zZ=C12+-" ; 0xa
argGrpABCDEHL:
.db "BCDEHL_A" ; 0xb
; This is a list of primary instructions (single upcode) that lead to a
; constant (no group code to insert). Format:
;
; 4 bytes for the name (fill with zero)
; 1 byte for arg constant
; 1 byte for 2nd arg constant
; 1 byte displacement for group arguments + flags
; 2 bytes for upcode (2nd byte is zero if instr is one byte)
;
; The displacement bit is split in 2 nibbles: lower nibble is the displacement
; value, upper nibble is for flags:
; Bit 7: indicates that the numerical argument is of the 'e' type and has to be
; decreased by 2 (djnz, jr).
; Bit 6: it indicates that the group argument's value is to be placed on the
; second upcode rather than the first.
; Bit 5: Indicates that this row is handled very specially: the next two bytes
; aren't upcode bytes, but a routine address to call to handle this case with
; custom code.
instrTBl:
.db "ADC", 0, 'A', 'l', 0, 0x8e , 0 ; ADC A, (HL)
.db "ADC", 0, 'A', 0xb, 0, 0b10001000 , 0 ; ADC A, r
.db "ADC", 0, 'A', 'n', 0, 0xce , 0 ; ADC A, n
.db "ADC", 0,'h',0x3,0x44, 0xed, 0b01001010 ; ADC HL, ss
.db "ADD", 0, 'A', 'l', 0, 0x86 , 0 ; ADD A, (HL)
.db "ADD", 0, 'A', 0xb, 0, 0b10000000 , 0 ; ADD A, r
.db "ADD", 0, 'A', 'n', 0, 0xc6 , 0 ; ADD A, n
.db "ADD", 0, 'h', 0x3, 4, 0b00001001 , 0 ; ADD HL, ss
.db "ADD", 0,'X',0x4,0x44, 0xdd, 0b00001001 ; ADD IX, pp
.db "ADD", 0,'Y',0x5,0x44, 0xfd, 0b00001001 ; ADD IY, rr
.db "ADD", 0, 'A', 'x', 0, 0xdd, 0x86 ; ADD A, (IX+d)
.db "ADD", 0, 'A', 'y', 0, 0xfd, 0x86 ; ADD A, (IY+d)
.db "AND", 0, 'l', 0, 0, 0xa6 , 0 ; AND (HL)
.db "AND", 0, 0xb, 0, 0, 0b10100000 , 0 ; AND r
.db "AND", 0, 'n', 0, 0, 0xe6 , 0 ; AND n
.db "AND", 0, 'x', 0, 0, 0xdd, 0xa6 ; AND (IX+d)
.db "AND", 0, 'y', 0, 0, 0xfd, 0xa6 ; AND (IY+d)
.db "BIT", 0,'n','l',0x20 \ .dw handleBITHL ; BIT b, (HL)
.db "BIT", 0,'n','x',0x20 \ .dw handleBITIX ; BIT b, (IX+d)
.db "BIT", 0,'n','y',0x20 \ .dw handleBITIY ; BIT b, (IY+d)
.db "BIT", 0,'n',0xb,0x20 \ .dw handleBITR ; BIT b, r
.db "CALL", 0xa, 'N', 3, 0b11000100 , 0 ; CALL cc, NN
.db "CALL", 'N', 0, 0, 0xcd , 0 ; CALL NN
.db "CCF", 0, 0, 0, 0, 0x3f , 0 ; CCF
.db "CP",0,0, 'l', 0, 0, 0xbe , 0 ; CP (HL)
.db "CP",0,0, 0xb, 0, 0, 0b10111000 , 0 ; CP r
.db "CP",0,0, 'n', 0, 0, 0xfe , 0 ; CP n
.db "CP",0,0, 'x', 0, 0, 0xdd, 0xbe ; CP (IX+d)
.db "CP",0,0, 'y', 0, 0, 0xfd, 0xbe ; CP (IY+d)
.db "CPD", 0, 0, 0, 0, 0xed, 0xa9 ; CPD
.db "CPDR", 0, 0, 0, 0xed, 0xb9 ; CPDR
.db "CPI", 0, 0, 0, 0, 0xed, 0xa1 ; CPI
.db "CPIR", 0, 0, 0, 0xed, 0xb1 ; CPIR
.db "CPL", 0, 0, 0, 0, 0x2f , 0 ; CPL
.db "DAA", 0, 0, 0, 0, 0x27 , 0 ; DAA
.db "DEC", 0, 'l', 0, 0, 0x35 , 0 ; DEC (HL)
.db "DEC", 0, 'X', 0, 0, 0xdd , 0x2b ; DEC IX
.db "DEC", 0, 'x', 0, 0, 0xdd , 0x35 ; DEC (IX+d)
.db "DEC", 0, 'Y', 0, 0, 0xfd , 0x2b ; DEC IY
.db "DEC", 0, 'y', 0, 0, 0xfd , 0x35 ; DEC (IY+d)
.db "DEC", 0, 0xb, 0, 3, 0b00000101 , 0 ; DEC r
.db "DEC", 0, 0x3, 0, 4, 0b00001011 , 0 ; DEC ss
.db "DI",0,0, 0, 0, 0, 0xf3 , 0 ; DI
.db "DJNZ", 'n', 0,0x80, 0x10 , 0 ; DJNZ e
.db "EI",0,0, 0, 0, 0, 0xfb , 0 ; EI
.db "EX",0,0, 'p', 'h', 0, 0xe3 , 0 ; EX (SP), HL
.db "EX",0,0, 'p', 'X', 0, 0xdd, 0xe3 ; EX (SP), IX
.db "EX",0,0, 'p', 'Y', 0, 0xfd, 0xe3 ; EX (SP), IY
.db "EX",0,0, 'a', 'f', 0, 0x08 , 0 ; EX AF, AF'
.db "EX",0,0, 'd', 'h', 0, 0xeb , 0 ; EX DE, HL
.db "EXX", 0, 0, 0, 0, 0xd9 , 0 ; EXX
.db "HALT", 0, 0, 0, 0x76 , 0 ; HALT
.db "IM",0,0,'n', 0,0x20 \ .dw handleIM ; IM {0,1,2}
.db "IN",0,0, 'A', 'm', 0, 0xdb , 0 ; IN A, (n)
.db "IN",0,0,0xb,'k',0x43, 0xed, 0b01000000 ; IN r, (C)
.db "INC", 0, 'l', 0, 0, 0x34 , 0 ; INC (HL)
.db "INC", 0, 'X', 0, 0, 0xdd , 0x23 ; INC IX
.db "INC", 0, 'x', 0, 0, 0xdd , 0x34 ; INC (IX+d)
.db "INC", 0, 'Y', 0, 0, 0xfd , 0x23 ; INC IY
.db "INC", 0, 'y', 0, 0, 0xfd , 0x34 ; INC (IY+d)
.db "INC", 0, 0xb, 0, 3, 0b00000100 , 0 ; INC r
.db "INC", 0, 0x3, 0, 4, 0b00000011 , 0 ; INC ss
.db "IND", 0, 0, 0, 0, 0xed, 0xaa ; IND
.db "INDR", 0, 0, 0, 0xed, 0xba ; INDR
.db "INI", 0, 0, 0, 0, 0xed, 0xa2 ; INI
.db "INIR", 0, 0, 0, 0xed, 0xb2 ; INIR
.db "JP",0,0, 'l', 0, 0, 0xe9 , 0 ; JP (HL)
.db "JP",0,0, 0xa, 'N', 3, 0b11000010 , 0 ; JP cc, NN
.db "JP",0,0, 'N', 0, 0, 0xc3 , 0 ; JP NN
.db "JP",0,0, 'x', 0,0x20 \ .dw handleJPIX ; JP (IX)
.db "JP",0,0, 'y', 0,0x20 \ .dw handleJPIY ; JP (IY)
.db "JR",0,0, 'n', 0,0x80, 0x18 , 0 ; JR e
.db "JR",0,0,'C','n',0x80, 0x38 , 0 ; JR C, e
.db "JR",0,0,'=','n',0x80, 0x30 , 0 ; JR NC, e
.db "JR",0,0,'Z','n',0x80, 0x28 , 0 ; JR Z, e
.db "JR",0,0,'z','n',0x80, 0x20 , 0 ; JR NZ, e
.db "LD",0,0, 'c', 'A', 0, 0x02 , 0 ; LD (BC), A
.db "LD",0,0, 'e', 'A', 0, 0x12 , 0 ; LD (DE), A
.db "LD",0,0, 'A', 'c', 0, 0x0a , 0 ; LD A, (BC)
.db "LD",0,0, 'A', 'e', 0, 0x1a , 0 ; LD A, (DE)
.db "LD",0,0, 's', 'h', 0, 0xf9 , 0 ; LD SP, HL
.db "LD",0,0, 'A', 'I', 0, 0xed, 0x57 ; LD A, I
.db "LD",0,0, 'I', 'A', 0, 0xed, 0x47 ; LD I, A
.db "LD",0,0, 'A', 'R', 0, 0xed, 0x5f ; LD A, R
.db "LD",0,0, 'R', 'A', 0, 0xed, 0x4f ; LD R, A
.db "LD",0,0, 'l', 0xb, 0, 0b01110000 , 0 ; LD (HL), r
.db "LD",0,0, 0xb, 'l', 3, 0b01000110 , 0 ; LD r, (HL)
.db "LD",0,0, 'l', 'n', 0, 0x36 , 0 ; LD (HL), n
.db "LD",0,0, 0xb, 'n', 3, 0b00000110 , 0 ; LD r, (HL)
.db "LD",0,0, 0x3, 'N', 4, 0b00000001 , 0 ; LD dd, n
.db "LD",0,0, 'M', 'A', 0, 0x32 , 0 ; LD (NN), A
.db "LD",0,0, 'A', 'M', 0, 0x3a , 0 ; LD A, (NN)
.db "LD",0,0, 'M', 'h', 0, 0x22 , 0 ; LD (NN), HL
.db "LD",0,0, 'h', 'M', 0, 0x2a , 0 ; LD HL, (NN)
.db "LD",0,0, 'M', 'X', 0, 0xdd, 0x22 ; LD (NN), IX
.db "LD",0,0, 'X', 'M', 0, 0xdd, 0x2a ; LD IX, (NN)
.db "LD",0,0, 'M', 'Y', 0, 0xfd, 0x22 ; LD (NN), IY
.db "LD",0,0, 'Y', 'M', 0, 0xfd, 0x2a ; LD IY, (NN)
.db "LD",0,0,'M',0x3,0x44, 0xed, 0b01000011 ; LD (NN), dd
.db "LD",0,0,0x3,'M',0x44, 0xed, 0b01001011 ; LD dd, (NN)
.db "LD",0,0, 'x','n',0x20 \ .dw handleLDIXn ; LD (IX+d), n
.db "LD",0,0, 'y','n',0x20 \ .dw handleLDIYn ; LD (IY+d), n
.db "LD",0,0, 'x',0xb,0x20 \ .dw handleLDIXr ; LD (IX+d), r
.db "LD",0,0, 'y',0xb,0x20 \ .dw handleLDIYr ; LD (IY+d), r
.db "LDD", 0, 0, 0, 0, 0xed, 0xa8 ; LDD
.db "LDDR", 0, 0, 0, 0xed, 0xb8 ; LDDR
.db "LDI", 0, 0, 0, 0, 0xed, 0xa0 ; LDI
.db "LDIR", 0, 0, 0, 0xed, 0xb0 ; LDIR
.db "NEG", 0, 0, 0, 0, 0xed, 0x44 ; NEG
.db "NOP", 0, 0, 0, 0, 0x00 , 0 ; NOP
.db "OR",0,0, 'l', 0, 0, 0xb6 , 0 ; OR (HL)
.db "OR",0,0, 0xb, 0, 0, 0b10110000 , 0 ; OR r
.db "OR",0,0, 'n', 0, 0, 0xf6 , 0 ; OR n
.db "OR",0,0, 'x', 0, 0, 0xdd, 0xb6 ; OR (IX+d)
.db "OR",0,0, 'y', 0, 0, 0xfd, 0xb6 ; OR (IY+d)
.db "OTDR", 0, 0, 0, 0xed, 0xbb ; OTDR
.db "OTIR", 0, 0, 0, 0xed, 0xb3 ; OTIR
.db "OUT", 0, 'm', 'A', 0, 0xd3 , 0 ; OUT (n), A
.db "OUT", 0,'k',0xb,0x43, 0xed, 0b01000001 ; OUT (C), r
.db "POP", 0, 0x1, 0, 4, 0b11000001 , 0 ; POP qq
.db "PUSH", 0x1, 0, 4, 0b11000101 , 0 ; PUSH qq
.db "RET", 0, 0, 0, 0, 0xc9 , 0 ; RET
.db "RET", 0, 0xa, 0, 3, 0b11000000 , 0 ; RET cc
.db "RLA", 0, 0, 0, 0, 0x17 , 0 ; RLA
.db "RLCA", 0, 0, 0, 0x07 , 0 ; RLCA
.db "RRA", 0, 0, 0, 0, 0x1f , 0 ; RRA
.db "RRCA", 0, 0, 0, 0x0f , 0 ; RRCA
.db "SBC", 0, 'A', 'l', 0, 0x9e , 0 ; SBC A, (HL)
.db "SBC", 0, 'A', 0xb, 0, 0b10011000 , 0 ; SBC A, r
.db "SCF", 0, 0, 0, 0, 0x37 , 0 ; SCF
.db "SUB", 0, 'A', 'l', 0, 0x96 , 0 ; SUB A, (HL)
.db "SUB", 0, 'A', 0xb, 0, 0b10010000 , 0 ; SUB A, r
.db "SUB", 0, 'n', 0, 0, 0xd6 , 0 ; SUB n
.db "XOR", 0, 'l', 0, 0, 0xae , 0 ; XOR (HL)
.db "XOR", 0, 0xb, 0, 0, 0b10101000 , 0 ; XOR r
; *** Variables ***
; Args are 3 bytes: argspec, then values of numerical constants (when that's
; appropriate)
curArg1:
.db 0, 0, 0
curArg2:
.db 0, 0, 0
curUpcode:
.db 0, 0, 0, 0