1
0
mirror of https://github.com/hsoft/collapseos.git synced 2024-11-08 15:38:06 +11:00
collapseos/apps/lib/args.asm
Virgil Dupras 019d05f64c Make the shell a userspace app
That's my mega-commit you've all been waiting for.

The code for the shell share more routines with userspace apps than with kernel
units, because, well, its behavior is that of a userspace app, not a device
driver.

This created a weird situation with libraries and jump tables. Some routine
belonging to the `kernel/` directory felt weird there.

And then comes `apps/basic`, which will likely share even more code with the
shell. I was seeing myself creating huge jump tables to reuse code from the
shell. It didn't feel right.

Moreover, we'll probably want basic-like apps to optionnally replace the shell.

So here I am with this huge change in the project structure. I didn't test all
recipes on hardware yet, I will do later. I might have broken some...

But now, the structure feels better and the line between what belongs to
`kernel` and what belongs to `apps` feels clearer.
2019-11-15 15:37:49 -05:00

109 lines
2.8 KiB
NASM

; *** Consts ***
; maximum number of bytes to receive as args in all commands. Determines the
; size of the args variable.
.equ PARSE_ARG_MAXCOUNT 3
; *** Code ***
; Parse arguments at (HL) with specifiers at (DE) into (IX).
;
; Args specifiers are a series of flag for each arg:
; Bit 0 - arg present: if unset, we stop parsing there
; Bit 1 - is word: this arg is a word rather than a byte. Because our
; destination are bytes anyway, this doesn't change much except
; for whether we expect a space between the hex pairs. If set,
; you still need to have a specifier for the second part of
; the multibyte.
; Bit 2 - optional: If set and not present during parsing, we don't error out
; and write zero
;
; Bit 3 - String argument: If set, this argument is a string. A pointer to the
; read string, null terminated (max 0x20 chars) will
; be placed in the next two bytes. This has to be the
; last argument of the list and it stops parsing.
; Sets A to nonzero if there was an error during parsing, zero otherwise.
parseArgs:
push bc
push de
push hl
push ix
; init the arg value to a default 0
xor a
ld (ix), a
ld (ix+1), a
ld (ix+2), a
ld b, PARSE_ARG_MAXCOUNT
.loop:
ld a, (hl)
; is this the end of the line?
or a ; cp 0
jr z, .endofargs
; Get the specs
ld a, (de)
bit 0, a ; do we have an arg?
jr z, .error ; not set? then we have too many args
ld c, a ; save the specs for multibyte check later
bit 3, a ; is our arg a string?
jr z, .notAString
; our arg is a string. Let's place HL in our next two bytes and call
; it a day. Little endian, remember
ld (ix), l
ld (ix+1), h
jr .success ; directly to success: skip endofargs checks
.notAString:
call parseHexPair
jr c, .error
; we have a good arg and we need to write A in (IX).
ld (ix), a
; Good! increase counters
inc de
inc ix
inc hl ; get to following char (generally a space)
; Our arg is parsed, our pointers are increased. Normally, HL should
; point to a space *unless* our argspec indicates a multibyte arg.
bit 1, c
jr nz, .nospacecheck ; bit set? no space check
; do we have a proper space char (or null char)?
ld a, (hl)
or a
jr z, .endofargs
cp ' '
jr nz, .error
inc hl
.nospacecheck:
djnz .loop
; If we get here, it means that our next char *has* to be a null char
ld a, (hl)
or a ; cp 0
jr z, .success ; zero? great!
jr .error
.endofargs:
; We encountered our null char. Let's verify that we either have no
; more args or that they are optional
ld a, (de)
or a
jr z, .success ; no arg? success
bit 2, a
jr z, .error ; if unset, arg is not optional. error
; success
.success:
xor a
jr .end
.error:
inc a
.end:
pop ix
pop hl
pop de
pop bc
ret