1
0
mirror of https://github.com/hsoft/collapseos.git synced 2024-11-02 16:20:55 +11:00

Compare commits

...

5 Commits

Author SHA1 Message Date
Virgil Dupras
c968995ec0 avra: add CBI and SBI
This completes instruction support for the Blink tn45 example.
2019-12-15 20:51:31 -05:00
Virgil Dupras
5c43988649 avra: code consolidation 2019-12-15 20:15:44 -05:00
Virgil Dupras
b130cac635 avra: code consolidation 2019-12-15 19:17:03 -05:00
Virgil Dupras
52359a4e42 avra: a little code deduplication 2019-12-15 18:52:00 -05:00
Virgil Dupras
e9c692ed50 avra: a litte bit of code deduplication 2019-12-15 18:34:14 -05:00
3 changed files with 192 additions and 206 deletions

View File

@ -36,54 +36,49 @@ instrNames:
.db "ADC", 0 .db "ADC", 0
.db "ADD", 0 .db "ADD", 0
.db "AND", 0 .db "AND", 0
.db "CLR", 0 .db "ASR", 0
.db "CP", 0
.db "CPC", 0
.db "CPSE", 0
.db "EOR", 0
.db "MOV", 0
.db "MUL", 0
.db "OR", 0
.db "SBC", 0
.db "SUB", 0
.equ I_ANDI 31
.db "ANDI", 0
.db "CPI", 0
.db "LDI", 0
.db "ORI", 0
.db "SBCI", 0
.db "SBR", 0
.db "SUBI", 0
.equ I_BLD 38
.db "BLD", 0 .db "BLD", 0
.db "BST", 0
.db "SBRC", 0
.db "SBRS", 0
.equ I_RCALL 42
.db "RCALL", 0
.db "RJMP", 0
.equ I_IN 44
.db "IN", 0
.equ I_OUT 45
.db "OUT", 0
; no arg (from here, instrTbl16)
.equ I_BREAK 46
.db "BREAK", 0 .db "BREAK", 0
.db "BST", 0
.db "CLC", 0 .db "CLC", 0
.db "CLH", 0 .db "CLH", 0
.db "CLI", 0 .db "CLI", 0
.db "CLN", 0 .db "CLN", 0
.db "CLR", 0
.db "CLS", 0 .db "CLS", 0
.db "CLT", 0 .db "CLT", 0
.db "CLV", 0 .db "CLV", 0
.db "CLZ", 0 .db "CLZ", 0
.db "COM", 0
.db "CP", 0
.db "CPC", 0
.db "CPSE", 0
.db "DEC", 0
.db "EICALL", 0 .db "EICALL", 0
.db "EIJMP", 0 .db "EIJMP", 0
.db "EOR", 0
.db "ICALL", 0 .db "ICALL", 0
.db "IJMP", 0 .db "IJMP", 0
.db "IN", 0
.db "INC", 0
.db "LAC", 0
.db "LAS", 0
.db "LAT", 0
.db "LSR", 0
.db "MOV", 0
.db "MUL", 0
.db "NEG", 0
.db "NOP", 0 .db "NOP", 0
.db "OR", 0
.db "OUT", 0
.db "POP", 0
.db "PUSH", 0
.db "RET", 0 .db "RET", 0
.db "RETI", 0 .db "RETI", 0
.db "ROR", 0
.db "SBC", 0
.db "SBRC", 0
.db "SBRS", 0
.db "SEC", 0 .db "SEC", 0
.db "SEH", 0 .db "SEH", 0
.db "SEI", 0 .db "SEI", 0
@ -93,23 +88,24 @@ instrNames:
.db "SEV", 0 .db "SEV", 0
.db "SEZ", 0 .db "SEZ", 0
.db "SLEEP", 0 .db "SLEEP", 0
.db "WDR", 0 .db "SUB", 0
; Rd(5)
.equ I_ASR 72
.db "ASR", 0
.db "COM", 0
.db "DEC", 0
.db "INC", 0
.db "LAC", 0
.db "LAS", 0
.db "LAT", 0
.db "LSR", 0
.db "NEG", 0
.db "POP", 0
.db "PUSH", 0
.db "ROR", 0
.db "SWAP", 0 .db "SWAP", 0
.db "WDR", 0
.db "XCH", 0 .db "XCH", 0
.equ I_ANDI 77
.db "ANDI", 0
.db "CPI", 0
.db "LDI", 0
.db "ORI", 0
.db "SBCI", 0
.db "SBR", 0
.db "SUBI", 0
.equ I_RCALL 84
.db "RCALL", 0
.db "RJMP", 0
.equ I_CBI 86
.db "CBI", 0
.db "SBI", 0
.db 0xff .db 0xff
; Instruction table ; Instruction table
@ -134,57 +130,55 @@ instrNames:
; In the same order as in instrNames ; In the same order as in instrNames
instrTbl: instrTbl:
; Rd(5) + Rd(5): XXXXXXrd ddddrrrr ; Regular processing: Rd with second arg having its 4 low bits placed in C's
.db 0x02, 0b00011100, 0x00 ; ADC ; 3:0 bits and the 4 high bits being place in B's 4:1 bits
.db 0x02, 0b00001100, 0x00 ; ADD ; No args are also there.
.db 0x02, 0b00100000, 0x00 ; AND .db 0x02, 0b00011100, 0x00 ; ADC Rd, Rr
.db 0x41, 0b00100100, 0x00 ; CLR (Rr copies Rd) .db 0x02, 0b00001100, 0x00 ; ADD Rd, Rr
.db 0x02, 0b00010100, 0x00 ; CP .db 0x02, 0b00100000, 0x00 ; AND Rd, Rr
.db 0x02, 0b00000100, 0x00 ; CPC .db 0x01, 0b10010100, 0b00000101 ; ASR Rd
.db 0x02, 0b00010000, 0x00 ; CPSE .db 0x05, 0b11111000, 0x00 ; BLD Rd, b
.db 0x02, 0b00100100, 0x00 ; EOR
.db 0x02, 0b00101100, 0x00 ; MOV
.db 0x02, 0b10011100, 0x00 ; MUL
.db 0x02, 0b00101000, 0x00 ; OR
.db 0x02, 0b00001000, 0x00 ; SBC
.db 0x02, 0b00011000, 0x00 ; SUB
; Rd(4) + K(8): XXXXKKKK ddddKKKK
.db 0x04, 0b01110000, 0x00 ; ANDI
.db 0x04, 0b00110000, 0x00 ; CPI
.db 0x04, 0b11100000, 0x00 ; LDI
.db 0x04, 0b01100000, 0x00 ; ORI
.db 0x04, 0b01000000, 0x00 ; SBCI
.db 0x04, 0b01100000, 0x00 ; SBR
.db 0x04, 0b01010000, 0x00 ; SUBI
; Rd(5) + bit: XXXXXXXd ddddXbbb: lonely bit in LSB is 0 in all cases, so we
; ignore it.
.db 0x05, 0b11111000, 0x00 ; BLD
.db 0x05, 0b11111010, 0x00 ; BST
.db 0x05, 0b11111100, 0x00 ; SBRC
.db 0x05, 0b11111110, 0x00 ; SBRS
; k(12): XXXXkkkk kkkkkkkk
.db 0x00, 0b11010000, 0x00 ; RCALL
.db 0x00, 0b11000000, 0x00 ; RJMP
; IN and OUT
.db 0x07, 0b10110000, 0x00 ; IN
.db 0x87, 0b10111000, 0x00 ; OUT (args reversed)
; no arg
.db 0x00, 0b10010101, 0b10011000 ; BREAK .db 0x00, 0b10010101, 0b10011000 ; BREAK
.db 0x05, 0b11111010, 0x00 ; BST Rd, b
.db 0x00, 0b10010100, 0b10001000 ; CLC .db 0x00, 0b10010100, 0b10001000 ; CLC
.db 0x00, 0b10010100, 0b11011000 ; CLH .db 0x00, 0b10010100, 0b11011000 ; CLH
.db 0x00, 0b10010100, 0b11111000 ; CLI .db 0x00, 0b10010100, 0b11111000 ; CLI
.db 0x00, 0b10010100, 0b10101000 ; CLN .db 0x00, 0b10010100, 0b10101000 ; CLN
.db 0x41, 0b00100100, 0x00 ; CLR Rd (Bit 6)
.db 0x00, 0b10010100, 0b11001000 ; CLS .db 0x00, 0b10010100, 0b11001000 ; CLS
.db 0x00, 0b10010100, 0b11101000 ; CLT .db 0x00, 0b10010100, 0b11101000 ; CLT
.db 0x00, 0b10010100, 0b10111000 ; CLV .db 0x00, 0b10010100, 0b10111000 ; CLV
.db 0x00, 0b10010100, 0b10011000 ; CLZ .db 0x00, 0b10010100, 0b10011000 ; CLZ
.db 0x01, 0b10010100, 0b00000000 ; COM Rd
.db 0x02, 0b00010100, 0x00 ; CP Rd, Rr
.db 0x02, 0b00000100, 0x00 ; CPC Rd, Rr
.db 0x02, 0b00010000, 0x00 ; CPSE Rd, Rr
.db 0x01, 0b10010100, 0b00001010 ; DEC Rd
.db 0x00, 0b10010101, 0b00011001 ; EICALL .db 0x00, 0b10010101, 0b00011001 ; EICALL
.db 0x00, 0b10010100, 0b00011001 ; EIJMP .db 0x00, 0b10010100, 0b00011001 ; EIJMP
.db 0x02, 0b00100100, 0x00 ; EOR Rd, Rr
.db 0x00, 0b10010101, 0b00001001 ; ICALL .db 0x00, 0b10010101, 0b00001001 ; ICALL
.db 0x00, 0b10010100, 0b00001001 ; IJMP .db 0x00, 0b10010100, 0b00001001 ; IJMP
.db 0x07, 0b10110000, 0x00 ; IN Rd, A
.db 0x01, 0b10010100, 0b00000011 ; INC Rd
.db 0x01, 0b10010010, 0b00000110 ; LAC Rd
.db 0x01, 0b10010010, 0b00000101 ; LAS Rd
.db 0x01, 0b10010010, 0b00000111 ; LAT Rd
.db 0x01, 0b10010100, 0b00000110 ; LSR Rd
.db 0x00, 0b00000000, 0b00000000 ; NOP .db 0x00, 0b00000000, 0b00000000 ; NOP
.db 0x02, 0b00101100, 0x00 ; MOV Rd, Rr
.db 0x02, 0b10011100, 0x00 ; MUL Rd, Rr
.db 0x01, 0b10010100, 0b00000001 ; NEG Rd
.db 0x02, 0b00101000, 0x00 ; OR Rd, Rr
.db 0x87, 0b10111000, 0x00 ; OUT A, Rr (Bit 7)
.db 0x01, 0b10010000, 0b00001111 ; POP Rd
.db 0x01, 0b10010010, 0b00001111 ; PUSH Rd
.db 0x00, 0b10010101, 0b00001000 ; RET .db 0x00, 0b10010101, 0b00001000 ; RET
.db 0x00, 0b10010101, 0b00011000 ; RETI .db 0x00, 0b10010101, 0b00011000 ; RETI
.db 0x01, 0b10010100, 0b00000111 ; ROR Rd
.db 0x02, 0b00001000, 0x00 ; SBC Rd, Rr
.db 0x05, 0b11111100, 0x00 ; SBRC Rd, b
.db 0x05, 0b11111110, 0x00 ; SBRS Rd, b
.db 0x00, 0b10010100, 0b00001000 ; SEC .db 0x00, 0b10010100, 0b00001000 ; SEC
.db 0x00, 0b10010100, 0b01011000 ; SEH .db 0x00, 0b10010100, 0b01011000 ; SEH
.db 0x00, 0b10010100, 0b01111000 ; SEI .db 0x00, 0b10010100, 0b01111000 ; SEI
@ -194,22 +188,24 @@ instrTbl:
.db 0x00, 0b10010100, 0b00111000 ; SEV .db 0x00, 0b10010100, 0b00111000 ; SEV
.db 0x00, 0b10010100, 0b00011000 ; SEZ .db 0x00, 0b10010100, 0b00011000 ; SEZ
.db 0x00, 0b10010101, 0b10001000 ; SLEEP .db 0x00, 0b10010101, 0b10001000 ; SLEEP
.db 0x02, 0b00011000, 0x00 ; SUB Rd, Rr
.db 0x01, 0b10010100, 0b00000010 ; SWAP Rd
.db 0x00, 0b10010101, 0b10101000 ; WDR .db 0x00, 0b10010101, 0b10101000 ; WDR
; Rd(5): XXXXXXXd ddddXXXX .db 0x01, 0b10010010, 0b00000100 ; XCH Rd
.db 0x01, 0b10010100, 0b00000101 ; ASR ; Rd(4) + K(8): XXXXKKKK ddddKKKK
.db 0x01, 0b10010100, 0b00000000 ; COM .db 0x04, 0b01110000, 0x00 ; ANDI
.db 0x01, 0b10010100, 0b00001010 ; DEC .db 0x04, 0b00110000, 0x00 ; CPI
.db 0x01, 0b10010100, 0b00000011 ; INC .db 0x04, 0b11100000, 0x00 ; LDI
.db 0x01, 0b10010010, 0b00000110 ; LAC .db 0x04, 0b01100000, 0x00 ; ORI
.db 0x01, 0b10010010, 0b00000101 ; LAS .db 0x04, 0b01000000, 0x00 ; SBCI
.db 0x01, 0b10010010, 0b00000111 ; LAT .db 0x04, 0b01100000, 0x00 ; SBR
.db 0x01, 0b10010100, 0b00000110 ; LSR .db 0x04, 0b01010000, 0x00 ; SUBI
.db 0x01, 0b10010100, 0b00000001 ; NEG ; k(12): XXXXkkkk kkkkkkkk
.db 0x01, 0b10010000, 0b00001111 ; POP .db 0x08, 0b11010000, 0x00 ; RCALL k
.db 0x01, 0b10010010, 0b00001111 ; PUSH .db 0x08, 0b11000000, 0x00 ; RJMP k
.db 0x01, 0b10010100, 0b00000111 ; ROR ; A(5) + bit: XXXXXXXX AAAAAbbb
.db 0x01, 0b10010100, 0b00000010 ; SWAP .db 0x09, 0b10011000, 0x00 ; CBI A, b
.db 0x01, 0b10010010, 0b00000100 ; XCH .db 0x09, 0b10011010, 0x00 ; SBI A, b
; Same signature as getInstID in instr.asm ; Same signature as getInstID in instr.asm
; Reads string in (HL) and returns the corresponding ID (I_*) in A. Sets Z if ; Reads string in (HL) and returns the corresponding ID (I_*) in A. Sets Z if
@ -271,7 +267,7 @@ parseInstruction:
push hl \ pop ix ; IX is now our tblrow push hl \ pop ix ; IX is now our tblrow
ld hl, 0 ld hl, 0
or a or a
jr z, .noarg jr z, .spit ; No arg? spit right away
and 0xf ; lower nibble and 0xf ; lower nibble
dec a ; argspec index is 1-based dec a ; argspec index is 1-based
ld hl, argSpecs ld hl, argSpecs
@ -286,7 +282,6 @@ parseInstruction:
call nz, .swapHL ; Bit 7 set, swap H and L call nz, .swapHL ; Bit 7 set, swap H and L
call _parseArgs call _parseArgs
ret nz ret nz
.noarg:
; *** Step 3: place arguments in binary upcode and spit. ; *** Step 3: place arguments in binary upcode and spit.
; (IX) is table row ; (IX) is table row
; Parse arg values now in H and L ; Parse arg values now in H and L
@ -297,69 +292,32 @@ parseInstruction:
call nz, .cpHintoL ; Bit 6 set, copy H into L call nz, .cpHintoL ; Bit 6 set, copy H into L
ld a, e ; InstrID ld a, e ; InstrID
cp I_ANDI cp I_ANDI
jr c, .spitRd5Rr5 jr c, .spitRegular
cp I_BLD
jr c, .spitRdK8
cp I_RCALL cp I_RCALL
jr c, .spitRdBit jr c, .spitRdK8
cp I_IN cp I_CBI
jr c, .spitK12 jr c, .spitk12
cp I_BREAK ; spit A(5) + bit
jp c, .spitINOUT
cp I_ASR
jp c, .spit ; no arg
; spitRd5
ld a, h ld a, h
rla \ rla \ rla
or l
ld c, a
jr .spit
.spitRegular:
; Regular process which places H and L, ORring it with upcode. Works
; in most cases.
call .placeRd call .placeRd
jp .spit call .placeRr
.spitRd5Rr5: jr .spit
ld a, h
call .placeRd
ld a, l
; let's start with the 4 lower bits
and 0xf
or c
; We now have our LSB in A. Let's spit it now.
call ioPutB
ld a, l
; and now that last high bit, currently bit 4, which must become bit 1
and 0b00010000
rra \ rra \ rra
or b
ld b, a
jp .spitMSB
.spitRdK8: .spitRdK8:
ld a, h ; Rd
call .placeRd call .placeRd
ld a, l ; K call .placeRr
; let's start with the 4 lower bits rr b ; K(8) start at B's 1st bit, not 2nd
and 0xf jr .spit
or c
; We now have our LSB in A. Let's spit it now.
call ioPutB
ld a, l
; and now those high 4 bits
and 0xf0
rra \ rra \ rra \ rra
ld b, a
jp .spitMSB
.spitRdBit: .spitk12:
ld a, h ; k(12) in HL
call .placeRd
or l
; LSB is in A and is ready to go
call ioPutB
jr .spitMSB
.spitK12:
; Let's deal with the upcode constant before we destroy IX below
ld b, (ix+1)
call readWord
call parseExpr
ret nz
push ix \ pop hl
; We're doing the same dance as in _readk7. See comments there. ; We're doing the same dance as in _readk7. See comments there.
ld de, 0xfff ld de, 0xfff
add hl, de add hl, de
@ -375,29 +333,13 @@ parseInstruction:
; We're within bounds! Now, divide by 2 ; We're within bounds! Now, divide by 2
ld a, l ld a, l
rr h \ rra rr h \ rra
; LSB in A, spit ; LSB in A
call ioPutB ld c, a
ld a, h ld a, h
and 0xf and 0xf
or b
jp ioPutB
.spitINOUT:
; Rd in H, A in L
ld a, h
call .placeRd
ld a, l
and 0xf
or c
; LSB ready
call ioPutB
; The two high bits of A go in bits 3:1 of MSB
ld a, l
rra \ rra \ rra
and 0b110
or b
ld b, a ld b, a
jr .spitMSB jr .spit
.spit: .spit:
; LSB is spit *before* MSB ; LSB is spit *before* MSB
ld a, (ix+2) ld a, (ix+2)
@ -464,12 +406,29 @@ parseInstruction:
jr .spitBR2 jr .spitBR2
; local routines ; local routines
; place number in A in BC at position .......d dddd.... ; place number in H in BC at position .......d dddd....
; BC is assumed to be 0 ; BC is assumed to be 0
.placeRd: .placeRd:
sla a \ rla \ rla \ rla ; last RLA might set carry sla h \ rl h \ rl h \ rl h ; last RL H might set carry
rl b rl b
ld c, h
ret
; place number in L in BC at position ...rrrr. ....rrrr
; BC is assumed to be either 0 or to be set by .placeRd, that is, that the
; high 4 bits of C and lowest bit of B will be preserved.
.placeRr:
; let's start with the 4 lower bits
ld a, l
and 0x0f
or c
ld c, a ld c, a
ld a, l
; and now those high 4 bits which go in B.
and 0xf0
rra \ rra \ rra
or b
ld b, a
ret ret
.swapHL: .swapHL:
@ -491,6 +450,7 @@ parseInstruction:
; 'a' - A 5-bit I/O port value ; 'a' - A 5-bit I/O port value
; 'A' - A 6-bit I/O port value ; 'A' - A 6-bit I/O port value
; 'b' - a 0-7 bit value ; 'b' - a 0-7 bit value
; 'D' - A double-length number which will fill whole HL.
; 'R' - an r5 value: r0-r31 ; 'R' - an r5 value: r0-r31
; 'r' - an r4 value: r16-r31 ; 'r' - an r4 value: r16-r31
; ;
@ -506,6 +466,8 @@ argSpecs:
.db 'R', 'b' ; Rd(5) + bit .db 'R', 'b' ; Rd(5) + bit
.db 'b', 7 ; bit + k(7) .db 'b', 7 ; bit + k(7)
.db 'R', 'A' ; Rd(5) + A(6) .db 'R', 'A' ; Rd(5) + A(6)
.db 'D', 0 ; K(12)
.db 'a', 'b' ; A(5) + bit
; Parse arguments from I/O according to specs in HL ; Parse arguments from I/O according to specs in HL
; H for first spec, L for second spec ; H for first spec, L for second spec
@ -515,16 +477,18 @@ argSpecs:
; and thus parse their args themselves. ; and thus parse their args themselves.
; Z for success. ; Z for success.
_parseArgs: _parseArgs:
; For the duration of the routine, our final value will be in DE, and ; For the duration of the routine, argspec is in DE and final MSB is
; then placed in HL at the end. ; in BC. We place result in HL at the end.
push de push de
push bc
ld bc, 0
ex de, hl ; argspecs now in DE ex de, hl ; argspecs now in DE
call readWord call readWord
jr nz, .end jr nz, .end
ld a, d ld a, d
call .parse call .parse
jr nz, .end jr nz, .end
ld d, a ld b, a
ld a, e ld a, e
or a or a
jr z, .end ; no arg jr z, .end ; no arg
@ -536,10 +500,12 @@ _parseArgs:
call .parse call .parse
jr nz, .end jr nz, .end
; we're done with (HL) now ; we're done with (HL) now
ld l, a ld c, a
cp a ; ensure Z cp a ; ensure Z
.end: .end:
ld h, d ld h, b
ld l, c
pop bc
pop de pop de
ret ret
@ -554,42 +520,43 @@ _parseArgs:
jr z, _readBit jr z, _readBit
cp 'A' cp 'A'
jr z, _readA6 jr z, _readA6
cp 'a'
jr z, _readA5
cp 7 cp 7
jr z, _readk7 jr z, _readk7
cp 8 cp 8
jr z, _readK8 jr z, _readK8
cp 'D'
jr z, _readDouble
ret ; something's wrong ret ; something's wrong
; Read expr and return success only if result in under number given in A
; Z for success
_readExpr:
push ix
push bc
ld b, a
call parseExpr
jr nz, .end
ld a, b
call _IX2A
jr nz, .end
or c
ld c, a
cp a ; ensure Z
.end:
pop bc
pop ix
ret
_readBit: _readBit:
ld a, 7 ld a, 7
jr _readExpr jr _readExpr
_readA6: _readA6:
ld a, 0x3f ld a, 0x3f
jr _readExpr
_readA5:
ld a, 0x1f
jr _readExpr
_readK8: _readK8:
ld a, 0xff ld a, 0xff
jr _readExpr jr _readExpr
_readDouble:
push ix
call parseExpr
jr nz, .end
push ix \ pop bc
; BC is already set. For good measure, let's set A to BC's MSB
ld a, b
.end:
pop ix
ret
_readk7: _readk7:
push hl push hl
push de push de
@ -611,7 +578,7 @@ _readk7:
inc hl \ inc hl inc hl \ inc hl
ex de, hl ex de, hl
sbc hl, de sbc hl, de
jp c, .err ; Carry? error jr c, .err ; Carry? error
ld de, 0x7f ld de, 0x7f
sbc hl, de sbc hl, de
; We're within bounds! However, our value in L is the number of ; We're within bounds! However, our value in L is the number of
@ -667,4 +634,23 @@ _IX2A:
; Z set from "or a" ; Z set from "or a"
ret ret
; Read expr and return success only if result in under number given in A
; Z for success
_readExpr:
push ix
push bc
ld b, a
call parseExpr
jr nz, .end
ld a, b
call _IX2A
jr nz, .end
or c
ld c, a
cp a ; ensure Z
.end:
pop bc
pop ix
ret

View File

@ -14,8 +14,8 @@ main:
ldi r16, RAMEND}8 ldi r16, RAMEND}8
out SPH, r16 out SPH, r16
;sbi DDRB, 0 sbi DDRB, 0
;cbi PORTB, 0 cbi PORTB, 0
; To have a blinking delay that's visible, we have to prescale a lot. ; To have a blinking delay that's visible, we have to prescale a lot.
; The maximum prescaler is 1024, which makes our TCNT0 increase ; The maximum prescaler is 1024, which makes our TCNT0 increase
@ -37,7 +37,7 @@ toggle:
ldi r16, 0b00000010 ; TOV0 ldi r16, 0b00000010 ; TOV0
out TIFR, R16 out TIFR, R16
inc r1 inc r1
;cbi PORTB, 0 cbi PORTB, 0
sbrs r1, 1 ; if LED is on sbrs r1, 1 ; if LED is on
;sbi PORTB, 0 sbi PORTB, 0
ret ret

View File

@ -1 +1 @@
å ¿à¿·`¿$·ýÐüÏà¿þ å ¿à¿¸šÀ˜·`¿$·ýÐüÏà¿À˜þÀš