mirror of
https://github.com/hsoft/collapseos.git
synced 2024-12-25 05:08:05 +11:00
avra: add LD/ST
This commit is contained in:
parent
51e500e8da
commit
98ca338aba
@ -31,8 +31,11 @@ instrNames:
|
||||
.equ I_BRBS 16
|
||||
.db "BRBS", 0
|
||||
.db "BRBC", 0
|
||||
.equ I_LD 18
|
||||
.db "LD", 0
|
||||
.db "ST", 0
|
||||
; Rd(5) + Rr(5) (from here, instrTbl8)
|
||||
.equ I_ADC 18
|
||||
.equ I_ADC 20
|
||||
.db "ADC", 0
|
||||
.db "ADD", 0
|
||||
.db "AND", 0
|
||||
@ -97,7 +100,7 @@ instrNames:
|
||||
.db "TST", 0
|
||||
.db "WDR", 0
|
||||
.db "XCH", 0
|
||||
.equ I_ANDI 82
|
||||
.equ I_ANDI 84
|
||||
.db "ANDI", 0
|
||||
.db "CBR", 0
|
||||
.db "CPI", 0
|
||||
@ -106,10 +109,10 @@ instrNames:
|
||||
.db "SBCI", 0
|
||||
.db "SBR", 0
|
||||
.db "SUBI", 0
|
||||
.equ I_RCALL 90
|
||||
.equ I_RCALL 92
|
||||
.db "RCALL", 0
|
||||
.db "RJMP", 0
|
||||
.equ I_CBI 92
|
||||
.equ I_CBI 94
|
||||
.db "CBI", 0
|
||||
.db "SBI", 0
|
||||
.db "SBIC", 0
|
||||
@ -118,7 +121,7 @@ instrNames:
|
||||
; ZASM limitation: CALL and JMP constants are 22-bit. In ZASM, we limit
|
||||
; ourselves to 16-bit. Supporting 22-bit would incur a prohibitive complexity
|
||||
; cost. As they say, 64K words ought to be enough for anybody.
|
||||
.equ I_CALL 96
|
||||
.equ I_CALL 98
|
||||
.db "CALL", 0
|
||||
.db "JMP", 0
|
||||
.db 0xff
|
||||
@ -280,8 +283,11 @@ parseInstruction:
|
||||
ld bc, 0
|
||||
ld e, a ; Let's keep that instrID somewhere safe
|
||||
; First, let's fetch our table row
|
||||
cp I_ADC
|
||||
cp I_LD
|
||||
jp c, .BR ; BR is special, no table row
|
||||
jp z, .LD ; LD is special
|
||||
cp I_ADC
|
||||
jp c, .ST ; ST is special
|
||||
|
||||
; *** Step 2: parse arguments
|
||||
sub I_ADC ; Adjust index for table
|
||||
@ -448,6 +454,40 @@ parseInstruction:
|
||||
; bit in H, k in L.
|
||||
jr .spitBR2
|
||||
|
||||
.LD:
|
||||
ld h, 'R'
|
||||
ld l, 'z'
|
||||
call _parseArgs
|
||||
ret nz
|
||||
ld d, 0b10000000
|
||||
jr .LDST
|
||||
.ST:
|
||||
ld h, 'z'
|
||||
ld l, 'R'
|
||||
call _parseArgs
|
||||
ret nz
|
||||
ld d, 0b10000010
|
||||
call .swapHL
|
||||
; continue to .LDST
|
||||
|
||||
.LDST:
|
||||
; Rd in H, Z in L, base upcode in D
|
||||
call .placeRd
|
||||
; We're spitting LSB first, so let's compose it.
|
||||
ld a, l
|
||||
and 0b00001111
|
||||
or c
|
||||
call ioPutB
|
||||
; Now, MSB's bit 4 is L's bit 4. How convenient!
|
||||
ld a, l
|
||||
and 0b00010000
|
||||
or d
|
||||
or b
|
||||
; MSB composed!
|
||||
call ioPutB
|
||||
cp a ; ensure Z
|
||||
ret
|
||||
|
||||
; local routines
|
||||
; place number in H in BC at position .......d dddd....
|
||||
; BC is assumed to be 0
|
||||
@ -502,6 +542,9 @@ parseInstruction:
|
||||
; 'D' - A double-length number which will fill whole HL.
|
||||
; 'R' - an r5 value: r0-r31
|
||||
; 'r' - an r4 value: r16-r31
|
||||
; 'z' - an indirect register (X, Y or Z), with our without post-inc/pre-dec
|
||||
; indicator. This will result in a 5-bit number, from which we can place
|
||||
; bits 3:0 to upcode's 3:0 and bit 4 at upcode's 12 in LD and ST.
|
||||
;
|
||||
; All arguments accept expressions, even 'r' ones: in 'r' args, we start by
|
||||
; looking if the arg starts with 'r' or 'R'. If yes, it's a simple 'rXX' value,
|
||||
@ -579,6 +622,8 @@ _parseArgs:
|
||||
jr z, _readK8
|
||||
cp 'D'
|
||||
jr z, _readDouble
|
||||
cp 'z'
|
||||
jp z, _readz
|
||||
ret ; something's wrong
|
||||
|
||||
_readBit:
|
||||
@ -708,4 +753,63 @@ _readExpr:
|
||||
pop ix
|
||||
ret
|
||||
|
||||
; Parse one of the following: X, Y, Z, X+, Y+, Z+, -X, -Y, -Z.
|
||||
; For each of those values, return a 5-bit value than can then be interleaved
|
||||
; with LD or ST upcodes.
|
||||
_readz:
|
||||
call strlen
|
||||
cp 3
|
||||
jp nc, unsetZ ; string too long
|
||||
; Let's load first char in A and second in A'. This will free HL
|
||||
ld a, (hl)
|
||||
ex af, af'
|
||||
inc hl
|
||||
ld a, (hl) ; Good, HL is now free
|
||||
ld hl, .tblStraight
|
||||
or a
|
||||
jr z, .parseXYZ ; Second char null? We have a single char
|
||||
; Maybe +
|
||||
cp '+'
|
||||
jr nz, .skip
|
||||
; We have a +
|
||||
ld hl, .tblInc
|
||||
jr .parseXYZ
|
||||
.skip:
|
||||
; Maybe a -
|
||||
ex af, af'
|
||||
cp '-'
|
||||
ret nz ; we have nothing
|
||||
; We have a -
|
||||
ld hl, .tblDec
|
||||
; continue to .parseXYZ
|
||||
.parseXYZ:
|
||||
; We have X, Y or Z in A'
|
||||
ex af, af'
|
||||
call upcase
|
||||
; Now, let's place HL
|
||||
cp 'X'
|
||||
jr z, .fetch
|
||||
inc hl
|
||||
cp 'Y'
|
||||
jr z, .fetch
|
||||
inc hl
|
||||
cp 'Z'
|
||||
ret nz ; error
|
||||
.fetch:
|
||||
ld a, (hl)
|
||||
; Z already set from earlier cp
|
||||
ret
|
||||
|
||||
.tblStraight:
|
||||
.db 0b11100 ; X
|
||||
.db 0b01000 ; Y
|
||||
.db 0b00000 ; Z
|
||||
.tblInc:
|
||||
.db 0b11101 ; X+
|
||||
.db 0b11001 ; Y+
|
||||
.db 0b10001 ; Z+
|
||||
.tblDec:
|
||||
.db 0b11110 ; -X
|
||||
.db 0b11010 ; -Y
|
||||
.db 0b10010 ; -Z
|
||||
|
||||
|
343
tools/tests/avra/seg7multiplex.asm
Normal file
343
tools/tests/avra/seg7multiplex.asm
Normal file
@ -0,0 +1,343 @@
|
||||
; This is a copy of my seg7multiplex main program, translated for zasm.
|
||||
; The output of zasm was verified against avra's.
|
||||
|
||||
; 7-segments multiplexer for an ATtiny45
|
||||
;
|
||||
; Register usage
|
||||
; R0: Digit on AFF1 (rightmost, QH on the SR)
|
||||
; R1: Digit on AFF2 (QG on the SR)
|
||||
; R2: Digit on AFF3 (QF on the SR)
|
||||
; R3: Digit on AFF4 (leftmost, QE on the SR)
|
||||
; R5: always zero
|
||||
; R6: generic tmp value
|
||||
; R16: generic tmp value
|
||||
; R18: value to send to the SR. cleared at every SENDSR call
|
||||
; in input mode, holds the input buffer
|
||||
; R30: (low Z) current digit being refreshed. cycles from 0 to 3
|
||||
;
|
||||
; Flags on GPIOs
|
||||
; GPIOR0 - bit 0: Whether we need to refresh the display
|
||||
; GPIOR0 - bit 1: Set when INT_INT0 has received a new bit
|
||||
; GPIOR0 - bit 2: The value of the new bit received
|
||||
; GPIOR0 - bit 4: input mode enabled
|
||||
|
||||
; Notes on register usage
|
||||
; R0 - R3: 4 low bits are for digit, 5th bit is for dot. other bits are unused.
|
||||
;
|
||||
; Notes on AFF1-4
|
||||
; They are reversed (depending on how you see things...). They read right to
|
||||
; left. That means that AFF1 is least significant, AFF4 is most.
|
||||
;
|
||||
; Input mode counter
|
||||
; When in input mode, TIMER0_OVF, instead of setting the refresh flag, increases
|
||||
; the counter. When it reaches 3, we timeout and consider input invalid.
|
||||
;
|
||||
; Input procedure
|
||||
;
|
||||
; Input starts at INT_INT0. What it does there is very simple: is sets up a flag
|
||||
; telling it received something and conditionally sets another flag with the
|
||||
; value of the received bit.
|
||||
;
|
||||
; While we do that, we have the input loop eagerly checking for that flag. When
|
||||
; it triggers, it records the bit in R18. The way it does so is that it inits
|
||||
; R18 at 1 (not 0), then for every bit, it left shifts R18, then adds the new
|
||||
; bit. When the 6th bit of R18 is set, it means we have every bit we need, we
|
||||
; can flush it into Z.
|
||||
|
||||
; Z points directly to R3, then R2, then R1, then R0. Because display refresh
|
||||
; is disabled during input, it won't result in weird displays, and because
|
||||
; partial numbers result in error display, then partial result won't lead to
|
||||
; weird displays, just error displays.
|
||||
;
|
||||
; When input mode begins, we change Z to point to R3 (the first digit we
|
||||
; receive) and we decrease the Z pointer after every digit we receive. When we
|
||||
; receive the last bit of the last digit and that we see that R30 is 0, we know
|
||||
; that the next (and last) digit is the checksum.
|
||||
|
||||
.inc "avr.h"
|
||||
.inc "tn254585.h"
|
||||
.inc "tn45.h"
|
||||
|
||||
; pins
|
||||
.equ RCLK 0 ; on PORTB
|
||||
.equ SRCLK 3 ; on PORTB
|
||||
.equ SER_DP 4 ; on PORTB
|
||||
.equ INSER 1 ; on PORTB
|
||||
|
||||
; Let's begin!
|
||||
|
||||
.org 0x0000
|
||||
RJMP MAIN
|
||||
RJMP INT_INT0
|
||||
RETI ; PCINT0
|
||||
RETI ; TIMER1_COMPA
|
||||
RETI ; TIMER1_OVF
|
||||
RJMP INT_TIMER0_OVF
|
||||
|
||||
MAIN:
|
||||
LDI R16, RAMEND&0xff
|
||||
OUT SPL, R16
|
||||
LDI R16, RAMEND}8
|
||||
OUT SPH, R16
|
||||
|
||||
SBI DDRB, RCLK
|
||||
SBI DDRB, SRCLK
|
||||
SBI DDRB, SER_DP
|
||||
|
||||
; we generally keep SER_DP high to avoid lighting DP
|
||||
SBI PORTB, SER_DP
|
||||
|
||||
; target delay: 600us. At 1Mhz, that's 75 ticks with a 1/8 prescaler.
|
||||
LDI R16, 0x02 ; CS01, 1/8 prescaler
|
||||
OUT TCCR0B, R16
|
||||
LDI R16, 0xb5 ; TOP - 75 ticks
|
||||
OUT TCNT0, R16
|
||||
|
||||
; Enable TIMER0_OVF
|
||||
IN R16, TIMSK
|
||||
ORI R16, 0x02 ; TOIE0
|
||||
OUT TIMSK, R16
|
||||
|
||||
; Generate interrupt on rising edge of INT0
|
||||
IN R16, MCUCR
|
||||
ORI R16, 0b00000011 ; ISC00 + ISC01
|
||||
OUT MCUCR, R16
|
||||
IN R16, GIMSK
|
||||
ORI R16, 0b01000000 ; INT0
|
||||
OUT GIMSK, R16
|
||||
|
||||
; we never use indirect addresses above 0xff through Z and never use
|
||||
; R31 in other situations. We can set it once and forget about it.
|
||||
CLR R31 ; high Z
|
||||
|
||||
; put 4321 in R2-5
|
||||
CLR R30 ; low Z
|
||||
LDI R16, 0x04
|
||||
ST Z+, R16 ; 4
|
||||
DEC R16
|
||||
ST Z+, R16 ; 3
|
||||
DEC R16
|
||||
ST Z+, R16 ; 2
|
||||
DEC R16
|
||||
ORI R16, 0b00010000 ; DP
|
||||
ST Z, R16 ; 1
|
||||
CLR R30 ; replace Z to 0
|
||||
|
||||
SEI
|
||||
|
||||
LOOP:
|
||||
RCALL INPT_CHK ; verify that we shouldn't enter input mode
|
||||
SBIC GPIOR0, 0 ; refesh flag cleared? skip next
|
||||
RCALL RDISP
|
||||
RJMP LOOP
|
||||
|
||||
; ***** DISPLAY *****
|
||||
|
||||
; refresh display with current number
|
||||
RDISP:
|
||||
; First things first: setup the timer for the next time
|
||||
LDI R16, 0xb5 ; TOP - 75 ticks
|
||||
OUT TCNT0, R16
|
||||
CBI GPIOR0, 0 ; Also, clear the refresh flag
|
||||
|
||||
; Let's begin with the display selector. We select one display at once
|
||||
; (not ready for multi-display refresh operations yet). Let's decode our
|
||||
; binary value from R30 into R16.
|
||||
MOV R6, R30
|
||||
INC R6 ; we need values 1-4, not 0-3
|
||||
LDI R16, 0x01
|
||||
RDISP1:
|
||||
DEC R6
|
||||
BREQ RDISP2 ; == 0? we're finished
|
||||
LSL R16
|
||||
RJMP RDISP1
|
||||
|
||||
; select a digit to display
|
||||
; we do so in a clever way: our registers just happen to be in SRAM
|
||||
; locations 0x00, 0x01, 0x02 and 0x03. Handy eh!
|
||||
RDISP2:
|
||||
LD R18, Z+ ; Indirect load of Z into R18 then increment
|
||||
CPI R30, 4
|
||||
BRCS RDISP3 ; lower than 4 ? don't reset
|
||||
CLR R30 ; not lower than 4? reset
|
||||
|
||||
; in the next step, we're going to join R18 and R16 together, but
|
||||
; before we do, we have one thing to process: R18's 5th bit. If it's
|
||||
; high, it means that DP is highlighted. We have to store this
|
||||
; information in R6 and use it later. Also, we have to clear the higher
|
||||
; bits of R18.
|
||||
RDISP3:
|
||||
SBRC R18, 4 ; 5th bit cleared? skip next
|
||||
INC R6 ; if set, then set R6 as well
|
||||
ANDI R18, 0xf ; clear higher bits
|
||||
|
||||
; Now we have our display selector in R16 and our digit to display in
|
||||
; R18. We want it all in R18.
|
||||
SWAP R18 ; digit goes in high "nibble"
|
||||
OR R18, R16
|
||||
|
||||
; While we send value to the shift register, SER_DP will change.
|
||||
; Because we want to avoid falsely lighting DP, we need to disable
|
||||
; output (disable OE) while that happens. This is why we set RCLK,
|
||||
; which is wired to OE too, HIGH (OE disabled) at the beginning of
|
||||
; the SR operation.
|
||||
;
|
||||
; Because RCLK was low before, this triggers a "buffer clock" on
|
||||
; the SR, but it doesn't matter because the value that was there
|
||||
; before has just been invalidated.
|
||||
SBI PORTB, RCLK ; high
|
||||
RCALL SENDSR
|
||||
; Flush out the buffer with RCLK
|
||||
CBI PORTB, RCLK ; OE enabled, but SR buffer isn't flushed
|
||||
NOP
|
||||
SBI PORTB, RCLK ; SR buffer flushed, OE disabled
|
||||
NOP
|
||||
CBI PORTB, RCLK ; OE enabled
|
||||
|
||||
; We're finished! Oh no wait, one last thing: should we highlight DP?
|
||||
; If we should, then we should keep SER_DP low rather than high for this
|
||||
; SR round.
|
||||
SBI PORTB, SER_DP ; SER_DP generally kept high
|
||||
SBRC R6, 0 ; R6 is cleared? skip DP set
|
||||
CBI PORTB, SER_DP ; SER_DP low highlight DP
|
||||
|
||||
RET ; finished for real this time!
|
||||
|
||||
; send R18 to shift register.
|
||||
; We send highest bits first so that QH is the MSB and QA is the LSB
|
||||
; low bits (QD - QA) control display's power
|
||||
; high bits (QH - QE) select the glyph
|
||||
SENDSR:
|
||||
LDI R16, 8 ; we will loop 8 times
|
||||
CBI PORTB, SER_DP ; low
|
||||
SBRC R18, 7 ; if latest bit isn't cleared, set SER_DP high
|
||||
SBI PORTB, SER_DP ; high
|
||||
RCALL TOGCP
|
||||
LSL R18 ; shift our data left
|
||||
DEC R16
|
||||
BRNE SENDSR+2 ; not zero yet? loop! (+2 to avoid reset)
|
||||
RET
|
||||
|
||||
; toggle SRCLK, waiting 1us between pin changes
|
||||
TOGCP:
|
||||
CBI PORTB, SRCLK ; low
|
||||
NOP ; At 1Mhz, this is enough for 1us
|
||||
SBI PORTB, SRCLK ; high
|
||||
RET
|
||||
|
||||
; ***** INPUT MODE *****
|
||||
|
||||
; check whether we should enter input mode and enter it if needed
|
||||
INPT_CHK:
|
||||
SBIS GPIOR0, 1 ; did we just trigger INT_INT0?
|
||||
RET ; no? return
|
||||
; yes? continue in input mode
|
||||
|
||||
; Initialize input mode and start the loop
|
||||
INPT_BEGIN:
|
||||
SBI GPIOR0, 4 ; enable input mode
|
||||
CBI GPIOR0, 1 ; The first trigger was an empty one
|
||||
|
||||
; At 1/8 prescaler, a "full" counter overflow is 2048us. That sounds
|
||||
; about right for an input timeout. So we co the easy route and simply
|
||||
; clear TCNT0 whenever we want to reset the timer
|
||||
OUT TCNT0, R5 ; R5 == 0
|
||||
CBI GPIOR0, 0 ; clear refresh flag in case it was just set
|
||||
LDI R30, 0x04 ; make Z point on R3+1 (we use pre-decrement)
|
||||
LDI R18, 0x01 ; initialize input buffer
|
||||
|
||||
; loop in input mode. When in input mode, we don't refresh the display, we use
|
||||
; all our processing power to process input.
|
||||
INPT_LOOP:
|
||||
RCALL INPT_READ
|
||||
|
||||
; Check whether we've reached timeout
|
||||
SBIC GPIOR0, 0 ; refesh flag cleared? skip next
|
||||
RCALL INPT_TIMEOUT
|
||||
|
||||
SBIC GPIOR0, 4 ; input mode cleared? skip next, to INPT_END
|
||||
RJMP INPT_LOOP ; not cleared? loop
|
||||
|
||||
INPT_END:
|
||||
; We received all our date or reached timeout. let's go back in normal
|
||||
; mode.
|
||||
CLR R30 ; Ensure Z isn't out of bounds
|
||||
SBI GPIOR0, 0 ; set refresh flag so we start refreshing now
|
||||
RET
|
||||
|
||||
; Read, if needed, the last received bit
|
||||
INPT_READ:
|
||||
SBIS GPIOR0, 1
|
||||
RET ; flag cleared? nothing to do
|
||||
|
||||
; Flag is set, we have to read
|
||||
CBI GPIOR0, 1 ; unset flag
|
||||
LSL R18
|
||||
SBIC GPIOR0, 2 ; data flag cleared? skip next
|
||||
INC R18
|
||||
|
||||
; Now, let's check if we have our 5 digits
|
||||
SBRC R18, 5 ; 6th bit cleared? nothing to do
|
||||
RCALL INPT_PUSH
|
||||
|
||||
OUT TCNT0, R5 ; clear timeout counter
|
||||
|
||||
RET
|
||||
|
||||
; Push the digit currently in R18 in Z and reset R18.
|
||||
INPT_PUSH:
|
||||
ANDI R18, 0b00011111 ; Remove 6th bit flag
|
||||
|
||||
TST R30 ; is R30 zero?
|
||||
BREQ INPT_CHECKSUM ; yes? it means we're at checksum phase.
|
||||
|
||||
; Otherwise, its a regular digit push
|
||||
ST -Z, R18
|
||||
LDI R18, 0x01
|
||||
RET
|
||||
|
||||
INPT_CHECKSUM:
|
||||
CBI GPIOR0, 4 ; clear input mode, whether we error or not
|
||||
MOV R16, R0
|
||||
ADD R16, R1
|
||||
ADD R16, R2
|
||||
ADD R16, R3
|
||||
; only consider the first 5 bits of the checksum since we can't receive
|
||||
; more. Otherwise, we couldn't possibly validate a value like 9999
|
||||
ANDI R16, 0b00011111
|
||||
CP R16, R18
|
||||
BRNE INPT_ERROR
|
||||
RET
|
||||
|
||||
INPT_TIMEOUT:
|
||||
CBI GPIOR0, 4 ; timeout reached, clear input flag
|
||||
; continue to INPT_ERROR
|
||||
|
||||
INPT_ERROR:
|
||||
LDI R16, 0x0c ; some weird digit
|
||||
MOV R0, R16
|
||||
MOV R1, R16
|
||||
MOV R2, R16
|
||||
MOV R3, R16
|
||||
RET
|
||||
|
||||
; ***** INTERRUPTS *****
|
||||
|
||||
; Record received bit
|
||||
; The main loop has to be fast enough to process that bit before we receive the
|
||||
; next one!
|
||||
; no SREG fiddling because no SREG-modifying instruction
|
||||
INT_INT0:
|
||||
CBI GPIOR0, 2 ; clear received data
|
||||
SBIC PINB, INSER ; INSER clear? skip next
|
||||
SBI GPIOR0, 2 ; INSER set? record this
|
||||
SBI GPIOR0, 1 ; indicate that we've received a bit
|
||||
RETI
|
||||
|
||||
; Set refresh flag whenever timer0 overflows
|
||||
; no SREG fiddling because no SREG-modifying instruction
|
||||
INT_TIMER0_OVF:
|
||||
SBI GPIOR0, 0
|
||||
RETI
|
||||
|
||||
|
BIN
tools/tests/avra/seg7multiplex.expected
Normal file
BIN
tools/tests/avra/seg7multiplex.expected
Normal file
Binary file not shown.
18
tools/tests/avra/testldst.asm
Normal file
18
tools/tests/avra/testldst.asm
Normal file
@ -0,0 +1,18 @@
|
||||
ld r0, X
|
||||
ld r1, Y
|
||||
ld r2, Z
|
||||
ld r3, X+
|
||||
ld r4, Y+
|
||||
ld r5, Z+
|
||||
ld r6, -X
|
||||
ld r7, -Y
|
||||
ld r8, -Z
|
||||
st X, r9
|
||||
st Y, r10
|
||||
st Z, r11
|
||||
st X+, r12
|
||||
st Y+, r13
|
||||
st Z+, r14
|
||||
st -X, r15
|
||||
st -Y, r16
|
||||
st -Z, r17
|
2
tools/tests/avra/testldst.expected
Normal file
2
tools/tests/avra/testldst.expected
Normal file
@ -0,0 +1,2 @@
|
||||
<0C>€ €=<3D>I<EFBFBD>Q<EFBFBD>n<EFBFBD>z<EFBFBD>‚<EFBFBD>ś’¨‚°‚Í’Ů’á’ţ’
|
||||
““
|
Loading…
Reference in New Issue
Block a user