; Collapse OS' Forth ; ; Unlike other assembler parts of Collapse OS, this unit is one huge file. ; ; I do this because as Forth takes a bigger place, assembler is bound to take ; less and less place. I am thus consolidating that assembler code in one ; place so that I have a better visibility of what to minimize. ; ; I also want to reduce the featureset of the assembler so that Collapse OS ; self-hosts in a more compact manner. File include is a big part of the ; complexity in zasm. If we can get rid of it, we'll be more compact. ; *** Defines *** ; GETC: address of a GetC routine ; PUTC: address of a PutC routine ; ; Those GetC/PutC routines are hooked through defines and have this API: ; ; GetC: Blocks until a character is read from the device and return that ; character in A. ; ; PutC: Write character specified in A onto the device. ; ; *** ASCII *** .equ BS 0x08 .equ CR 0x0d .equ LF 0x0a .equ DEL 0x7f ; *** Const *** ; Base of the Return Stack .equ RS_ADDR 0xf000 ; Number of bytes we keep as a padding between HERE and the scratchpad .equ PADDING 0x20 ; Max length of dict entry names .equ NAMELEN 7 ; Offset of the code link relative to the beginning of the word .equ CODELINK_OFFSET NAMELEN+3 ; Buffer where WORD copies its read word to. It's significantly larger than ; NAMELEN, but who knows, in a comment, we might have a very long word... .equ WORD_BUFSIZE 0x20 ; Allocated space for sysvars (see comment above SYSVCNT) .equ SYSV_BUFSIZE 0x10 ; Flags for the "flag field" of the word structure ; IMMEDIATE word .equ FLAG_IMMED 0 ; *** Variables *** .equ INITIAL_SP RAMSTART ; wordref of the last entry of the dict. .equ CURRENT @+2 ; Pointer to the next free byte in dict. .equ HERE @+2 ; Interpreter pointer. See Execution model comment below. .equ IP @+2 ; Global flags ; Bit 0: whether the interpreter is executing a word (as opposed to parsing) .equ FLAGS @+2 ; Pointer to the system's number parsing function. It points to then entry that ; had the "(parse)" name at startup. During stage0, it's out builtin PARSE, ; but at stage1, it becomes "(parse)" from core.fs. It can also be changed at ; runtime. .equ PARSEPTR @+2 ; Pointer to the word executed by "C<". During stage0, this points to KEY. ; However, KEY ain't very interactive. This is why we implement a readline ; interface in Forth, which we plug in during init. If "(c<)" exists in the ; dict, CINPTR is set to it. Otherwise, we set KEY .equ CINPTR @+2 .equ WORDBUF @+2 ; Sys Vars are variables with their value living in the system RAM segment. We ; need this mechanisms for core Forth source needing variables. Because core ; Forth source is pre-compiled, it needs to be able to live in ROM, which means ; that we can't compile a regular variable in it. SYSVNXT points to the next ; free space in SYSVBUF. Then, at the word level, it's a regular sysvarWord. .equ SYSVNXT @+WORD_BUFSIZE .equ SYSVBUF @+2 .equ RAMEND @+SYSV_BUFSIZE ; (HERE) usually starts at RAMEND, but in certain situations, such as in stage0, ; (HERE) will begin at a strategic place. .equ HERE_INITIAL RAMEND ; EXECUTION MODEL ; After having read a line through readline, we want to interpret it. As ; a general rule, we go like this: ; ; 1. read single word from line ; 2. Can we find the word in dict? ; 3. If yes, execute that word, goto 1 ; 4. Is it a number? ; 5. If yes, push that number to PS, goto 1 ; 6. Error: undefined word. ; ; EXECUTING A WORD ; ; At it's core, executing a word is having the wordref in IY and call ; EXECUTE. Then, we let the word do its things. Some words are special, ; but most of them are of the compiledWord type, and that's their execution that ; we describe here. ; ; First of all, at all time during execution, the Interpreter Pointer (IP) ; points to the wordref we're executing next. ; ; When we execute a compiledWord, the first thing we do is push IP to the Return ; Stack (RS). Therefore, RS' top of stack will contain a wordref to execute ; next, after we EXIT. ; ; At the end of every compiledWord is an EXIT. This pops RS, sets IP to it, and ; continues. ; *** Code *** forthMain: ; STACK OVERFLOW PROTECTION: ; To avoid having to check for stack underflow after each pop operation ; (which can end up being prohibitive in terms of costs), we give ; ourselves a nice 6 bytes buffer. 6 bytes because we seldom have words ; requiring more than 3 items from the stack. Then, at each "exit" call ; we check for stack underflow. push af \ push af \ push af ld (INITIAL_SP), sp ld ix, RS_ADDR ; LATEST is a *indirect* label to the latest entry of the dict. See ; default at the bottom of dict.asm. This indirection allows us to ; override latest to a value set in a binary dict compiled separately, ; for example by the stage0 bin. ld hl, LATEST call intoHL ld (CURRENT), hl ld hl, HERE_INITIAL ld (HERE), hl ; Set up PARSEPTR ld hl, PARSE-CODELINK_OFFSET call find ld (PARSEPTR), de ; Set up CINPTR ; do we have a C< impl? ld hl, .cinName call find jr z, .skip ; no? then use KEY ld de, KEY .skip: ld (CINPTR), de ; Set up SYSVNXT ld hl, SYSVBUF ld (SYSVNXT), hl ld hl, BEGIN push hl jp EXECUTE+2 .cinName: .db "C<", 0 BEGIN: .dw compiledWord .dw LIT .db "(c<$)", 0 .dw FIND_ .dw NOT .dw CSKIP .dw EXECUTE .dw INTERPRET INTERPRET: .dw compiledWord ; BBR mark .dw WORD .dw FIND_ .dw CSKIP .dw FBR .db 32 ; It's a word, execute it .dw FLAGS_ .dw FETCH .dw ONE ; Bit 0 on .dw OR .dw FLAGS_ .dw STORE .dw EXECUTE .dw FLAGS_ .dw FETCH .dw NUMBER .dw 0xfffe ; Bit 0 off .dw AND .dw FLAGS_ .dw STORE .dw BBR .db 39 ; FBR mark, try number .dw PARSEI .dw BBR .db 44 ; infinite loop ; *** Collapse OS lib copy *** ; In the process of Forth-ifying Collapse OS, apps will be slowly rewritten to ; Forth and the concept of ASM libs will become obsolete. To facilitate this ; transition, I make, right now, a copy of the routines actually used by Forth's ; native core. This also has the effect of reducing binary size right now and ; give us an idea of Forth's compactness. ; These routines below are copy/paste from apps/lib and stdio. ; copy (HL) into DE, then exchange the two, utilising the optimised HL instructions. ; ld must be done little endian, so least significant byte first. intoHL: push de ld e, (hl) inc hl ld d, (hl) ex de, hl pop de ret ; add the value of A into HL ; affects carry flag according to the 16-bit addition, Z, S and P untouched. addHL: push de ld d, 0 ld e, a add hl, de pop de ret ; Copy string from (HL) in (DE), that is, copy bytes until a null char is ; encountered. The null char is also copied. ; HL and DE point to the char right after the null char. strcpy: ld a, (hl) ld (de), a inc hl inc de or a jr nz, strcpy ret ; Compares strings pointed to by HL and DE until one of them hits its null char. ; If equal, Z is set. If not equal, Z is reset. C is set if HL > DE strcmp: push hl push de .loop: ld a, (de) cp (hl) jr nz, .end ; not equal? break early. NZ is carried out ; to the caller or a ; If our chars are null, stop the cmp inc hl inc de jr nz, .loop ; Z is carried through .end: pop de pop hl ; Because we don't call anything else than CP that modify the Z flag, ; our Z value will be that of the last cp (reset if we broke the loop ; early, set otherwise) ret ; Compares strings pointed to by HL and DE up to NAMELEN count of characters. If ; equal, Z is set. If not equal, Z is reset. strncmp: push bc push hl push de ld b, NAMELEN .loop: ld a, (de) cp (hl) jr nz, .end ; not equal? break early. NZ is carried out ; to the called or a ; If our chars are null, stop the cmp jr z, .end ; The positive result will be carried to the ; caller inc hl inc de djnz .loop ; We went through all chars with success, but our current Z flag is ; unset because of the cp 0. Let's do a dummy CP to set the Z flag. cp a .end: pop de pop hl pop bc ; Because we don't call anything else than CP that modify the Z flag, ; our Z value will be that of the last cp (reset if we broke the loop ; early, set otherwise) ret ; Given a string at (HL), move HL until it points to the end of that string. strskip: push bc ex af, af' xor a ; look for null char ld b, a ld c, a cpir ; advances HL regardless of comparison, so goes one too far dec hl ex af, af' pop bc ret ; Borrowed from Tasty Basic by Dimitri Theulings (GPL). ; Divide HL by DE, placing the result in BC and the remainder in HL. divide: push hl ; --> lvl 1 ld l, h ; divide h by de ld h, 0 call .dv1 ld b, c ; save result in b ld a, l ; (remainder + l) / de pop hl ; <-- lvl 1 ld h, a .dv1: ld c, 0xff ; result in c .dv2: inc c ; dumb routine call .subde ; divide using subtract and count jr nc, .dv2 add hl, de ret .subde: ld a, l sub e ; subtract de from hl ld l, a ld a, h sbc a, d ld h, a ret ; Parse string at (HL) as a decimal value and return value in DE. ; Reads as many digits as it can and stop when: ; 1 - A non-digit character is read ; 2 - The number overflows from 16-bit ; HL is advanced to the character following the last successfully read char. ; Error conditions are: ; 1 - There wasn't at least one character that could be read. ; 2 - Overflow. ; Sets Z on success, unset on error. parseDecimal: ; First char is special: it has to succeed. ld a, (hl) ; Parse the decimal char at A and extract it's 0-9 numerical value. Put the ; result in A. ; On success, the carry flag is reset. On error, it is set. add a, 0xff-'9' ; maps '0'-'9' onto 0xf6-0xff sub 0xff-9 ; maps to 0-9 and carries if not a digit ret c ; Error. If it's C, it's also going to be NZ ; During this routine, we switch between HL and its shadow. On one side, ; we have HL the string pointer, and on the other side, we have HL the ; numerical result. We also use EXX to preserve BC, saving us a push. exx ; HL as a result ld h, 0 ld l, a ; load first digit in without multiplying .loop: exx ; HL as a string pointer inc hl ld a, (hl) exx ; HL as a numerical result ; same as other above add a, 0xff-'9' sub 0xff-9 jr c, .end ld b, a ; we can now use a for overflow checking add hl, hl ; x2 sbc a, a ; a=0 if no overflow, a=0xFF otherwise ld d, h ld e, l ; de is x2 add hl, hl ; x4 rla add hl, hl ; x8 rla add hl, de ; x10 rla ld d, a ; a is zero unless there's an overflow ld e, b add hl, de adc a, a ; same as rla except affects Z ; Did we oveflow? jr z, .loop ; No? continue ; error, NZ already set exx ; HL is now string pointer, restore BC ; HL points to the char following the last success. ret .end: push hl ; --> lvl 1, result exx ; HL as a string pointer, restore BC pop de ; <-- lvl 1, result cp a ; ensure Z ret ; *** Support routines *** ; Find the entry corresponding to word where (HL) points to and sets DE to ; point to that entry. ; Z if found, NZ if not. find: push hl push bc ld de, (CURRENT) ld bc, CODELINK_OFFSET .inner: ; DE is a wordref, let's go to beginning of struct push de ; --> lvl 1 or a ; clear carry ex de, hl sbc hl, bc ex de, hl ; We're good, DE points to word name call strncmp pop de ; <-- lvl 1, return to wordref jr z, .end ; found call .prev jr nz, .inner ; Z set? end of dict unset Z inc a .end: pop bc pop hl ret ; For DE being a wordref, move DE to the previous wordref. ; Z is set if DE point to 0 (no entry). NZ if not. .prev: dec de \ dec de \ dec de ; prev field ex de, hl call intoHL ex de, hl ; de preserved by intoHL, so no push/pop needed ; DE points to prev. Is it zero? xor a or d or e ; Z will be set if DE is zero ret ; Checks flags Z and S and sets BC to 0 if Z, 1 if C and -1 otherwise flagsToBC: ld bc, 0 ret z ; equal inc bc ret m ; > ; < dec bc dec bc ret ; Write DE in (HL), advancing HL by 2. DEinHL: ld (hl), e inc hl ld (hl), d inc hl ret ; *** Stack management *** ; The Parameter stack (PS) is maintained by SP and the Return stack (RS) is ; maintained by IX. This allows us to generally use push and pop freely because ; PS is the most frequently used. However, this causes a problem with routine ; calls: because in Forth, the stack isn't balanced within each call, our return ; offset, when placed by a CALL, messes everything up. This is one of the ; reasons why we need stack management routines below. IX always points to RS' ; Top Of Stack (TOS) ; ; This return stack contain "Interpreter pointers", that is a pointer to the ; address of a word, as seen in a compiled list of words. ; Push value HL to RS pushRS: inc ix inc ix ld (ix), l ld (ix+1), h ret ; Pop RS' TOS to HL popRS: ld l, (ix) ld h, (ix+1) dec ix dec ix ret popRSIP: call popRS ld (IP), hl ret ; Verifies that SP and RS are within bounds. If it's not, call ABORT chkRS: push ix \ pop hl push de ; --> lvl 1 ld de, RS_ADDR or a ; clear carry sbc hl, de pop de ; <-- lvl 1 jp c, abortUnderflow ret chkPS: push hl ld hl, (INITIAL_SP) ; We have the return address for this very call on the stack and ; protected registers. Let's compensate dec hl \ dec hl dec hl \ dec hl or a ; clear carry sbc hl, sp pop hl ret nc ; (INITIAL_SP) >= SP? good jp abortUnderflow ; *** Dictionary *** ; It's important that this part is at the end of the resulting binary. ; A dictionary entry has this structure: ; - 7b name (zero-padded) ; - 2b prev pointer ; - 1b flags (bit 0: IMMEDIATE) ; - 2b code pointer ; - Parameter field (PF) ; ; The code pointer point to "word routines". These routines expect to be called ; with IY pointing to the PF. They themselves are expected to end by jumping ; to the address at (IP). They will usually do so with "jp next". ; ; That's for "regular" words (words that are part of the dict chain). There are ; also "special words", for example NUMBER, LIT, FBR, that have a slightly ; different structure. They're also a pointer to an executable, but as for the ; other fields, the only one they have is the "flags" field. ; This routine is jumped to at the end of every word. In it, we jump to current ; IP, but we also take care of increasing it my 2 before jumping next: ; Before we continue: are stacks within bounds? call chkPS call chkRS ld de, (IP) ld h, d ld l, e inc de \ inc de ld (IP), de ; HL is an atom list pointer. We need to go into it to have a wordref ld e, (hl) inc hl ld d, (hl) push de jp EXECUTE+2 ; Execute a word containing native code at its PF address (PFA) nativeWord: jp (iy) ; Execute a list of atoms, which always end with EXIT. ; IY points to that list. What do we do: ; 1. Push current IP to RS ; 2. Set new IP to the second atom of the list ; 3. Execute the first atom of the list. compiledWord: ld hl, (IP) call pushRS push iy \ pop hl inc hl inc hl ld (IP), hl ; IY still is our atom reference... ld l, (iy) ld h, (iy+1) push hl ; argument for EXECUTE jp EXECUTE+2 ; Pushes the PFA directly cellWord: push iy jp next ; Pushes the address in the first word of the PF sysvarWord: ld l, (iy) ld h, (iy+1) push hl jp next ; The word was spawned from a definition word that has a DOES>. PFA+2 (right ; after the actual cell) is a link to the slot right after that DOES>. ; Therefore, what we need to do push the cell addr like a regular cell, then ; follow the link from the PFA, and then continue as a regular compiledWord. doesWord: push iy ; like a regular cell ld l, (iy+2) ld h, (iy+3) push hl \ pop iy jr compiledWord ; This is not a word, but a number literal. This works a bit differently than ; others: PF means nothing and the actual number is placed next to the ; numberWord reference in the compiled word list. What we need to do to fetch ; that number is to play with the IP. numberWord: ld hl, (IP) ; (HL) is out number ld e, (hl) inc hl ld d, (hl) inc hl ld (IP), hl ; advance IP by 2 push de jp next NUMBER: .dw numberWord ; Similarly to numberWord, this is not a real word, but a string literal. ; Instead of being followed by a 2 bytes number, it's followed by a ; null-terminated string. When called, puts the string's address on PS litWord: ld hl, (IP) push hl call strskip inc hl ; after null termination ld (IP), hl jp next LIT: .dw litWord ; Pop previous IP from Return stack and execute it. ; ( R:I -- ) .db "EXIT" .fill 3 .dw 0 .db 0 EXIT: .dw nativeWord call popRSIP jp next ; ( R:I -- ) .db "QUIT" .fill 3 .dw EXIT .db 0 QUIT: .dw compiledWord .dw ZERO .dw FLAGS_ .dw STORE .dw .private .dw INTERPRET .private: .dw nativeWord ld ix, RS_ADDR jp next .db "ABORT" .fill 2 .dw QUIT .db 0 ABORT: .dw compiledWord .dw .private .dw QUIT .private: .dw nativeWord ; Reinitialize PS ld sp, (INITIAL_SP) jp next abortUnderflow: ld hl, .word push hl jp EXECUTE+2 .word: .dw compiledWord .dw LIT .db "stack underflow", 0 .dw PRINT .dw ABORT .db "BYE" .fill 4 .dw ABORT .db 0 BYE: .dw nativeWord ; Goodbye Forth! Before we go, let's restore the stack ld sp, (INITIAL_SP) ; unwind stack underflow buffer pop af \ pop af \ pop af ; success xor a ret ; ( c -- ) .db "EMIT" .fill 3 .dw BYE .db 0 EMIT: .dw nativeWord pop hl call chkPS ld a, l call PUTC jp next .db "(print)" .dw EMIT .db 0 PRINT: .dw nativeWord pop hl call chkPS .loop: ld a, (hl) ; load character to send or a ; is it zero? jp z, next ; if yes, we're finished call PUTC inc hl jr .loop ; ( c port -- ) .db "PC!" .fill 4 .dw PRINT .db 0 PSTORE: .dw nativeWord pop bc pop hl call chkPS out (c), l jp next ; ( port -- c ) .db "PC@" .fill 4 .dw PSTORE .db 0 PFETCH: .dw nativeWord pop bc call chkPS ld h, 0 in l, (c) push hl jp next .db "C," .fill 5 .dw PFETCH .db 0 CWR: .dw nativeWord pop de call chkPS ld hl, (HERE) ld (hl), e inc hl ld (HERE), hl jp next .db "," .fill 6 .dw CWR .db 0 WR: .dw nativeWord pop de call chkPS ld hl, (HERE) call DEinHL ld (HERE), hl jp next ; ( addr -- ) .db "EXECUTE" .dw WR .db 0 EXECUTE: .dw nativeWord pop iy ; is a wordref call chkPS ld l, (iy) ld h, (iy+1) ; HL points to code pointer inc iy inc iy ; IY points to PFA jp (hl) ; go! .db ";" .fill 6 .dw EXECUTE .db 1 ; IMMEDIATE ENDDEF: .dw compiledWord .dw NUMBER .dw EXIT .dw WR .dw R2P ; exit COMPILE .dw DROP .dw R2P ; exit DEFINE .dw DROP .dw EXIT .db ":" .fill 6 .dw ENDDEF .db 1 ; IMMEDIATE DEFINE: .dw compiledWord .dw WORD .dw ENTRYHEAD .dw NUMBER .dw compiledWord .dw WR ; BBR branch mark .dw .compile .dw BBR .db 4 ; no need for EXIT, ENDDEF takes care of taking us out .compile: .dw compiledWord .dw WORD .dw FIND_ .dw NOT .dw CSKIP .dw FBR .db 7 ; Maybe number .dw PARSEI .dw LITN .dw EXIT ; FBR mark .dw DUP .dw ISIMMED .dw CSKIP .dw FBR .db 5 ; is immediate. just execute. .dw EXECUTE .dw EXIT ; FBR mark ; just a word, write .dw WR .dw EXIT .db "DOES>" .fill 2 .dw DEFINE .db 0 DOES: .dw nativeWord ; We run this when we're in an entry creation context. Many things we ; need to do. ; 1. Change the code link to doesWord ; 2. Leave 2 bytes for regular cell variable. ; 3. Write down IP+2 to entry. ; 3. exit. we're done here. ld hl, (CURRENT) ld de, doesWord call DEinHL inc hl \ inc hl ; cell variable space ld de, (IP) call DEinHL ld (HERE), hl jp EXIT+2 .db "IMMEDIA" .dw DOES .db 0 IMMEDIATE: .dw nativeWord ld hl, (CURRENT) dec hl set FLAG_IMMED, (hl) jp next .db "IMMED?" .fill 1 .dw IMMEDIATE .db 0 ISIMMED: .dw nativeWord pop hl call chkPS dec hl ld de, 0 bit FLAG_IMMED, (hl) jr z, .notset inc de .notset: push de jp next ; ( n -- ) .db "LITN" .fill 3 .dw ISIMMED .db 0 LITN: .dw nativeWord ld hl, (HERE) ld de, NUMBER call DEinHL pop de ; number from stack call chkPS call DEinHL ld (HERE), hl jp next .db "SCPY" .fill 3 .dw LITN .db 0 SCPY: .dw nativeWord pop hl ld de, (HERE) call strcpy ld (HERE), de jp next .db "LIT" .fill 4 .dw SCPY .db 0 LIT_: .dw compiledWord .dw NUMBER .dw LIT .dw WR .dw EXIT .db "LITS" .fill 3 .dw LIT_ .db 0 LITS: .dw compiledWord .dw LIT_ .dw SCPY .dw EXIT .db "LIT<" .fill 3 .dw LITS .db 1 ; IMMEDIATE LITRD: .dw compiledWord .dw WORD .dw LITS .dw EXIT .db "(find)" .fill 1 .dw LITRD .db 0 FIND_: .dw nativeWord pop hl call find jr z, .found ; not found push hl ld de, 0 push de jp next .found: push de ld de, 1 push de jp next .db "'" .fill 6 .dw FIND_ .db 0 FIND: .dw compiledWord .dw WORD .dw FIND_ .dw CSKIP .dw FINDERR .dw EXIT .db "[']" .fill 4 .dw FIND .db 0b01 ; IMMEDIATE FINDI: .dw compiledWord .dw WORD .dw FIND_ .dw CSKIP .dw FINDERR .dw LITN .dw EXIT FINDERR: .dw compiledWord .dw DROP ; Drop str addr, we don't use it .dw LIT .db "word not found", 0 .dw PRINT .dw ABORT ; ( -- c ) .db "KEY" .fill 4 .dw FINDI .db 0 KEY: .dw nativeWord call GETC ld h, 0 ld l, a push hl jp next ; This is an indirect word that can be redirected through "CINPTR" ; This is not a real word because it's not meant to be referred to in Forth ; code: it is replaced in readln.fs. CIN: .dw compiledWord .dw NUMBER .dw CINPTR .dw FETCH .dw EXECUTE .dw EXIT ; ( c -- f ) ; 33 CMP 1 + NOT ; The NOT is to normalize the negative/positive numbers to 1 or 0. ; Hadn't we wanted to normalize, we'd have written: ; 32 CMP 1 - .db "WS?" .fill 4 .dw KEY .db 0 ISWS: .dw compiledWord .dw NUMBER .dw 33 .dw CMP .dw ONE .dw PLUS .dw NOT .dw EXIT .db "NOT" .fill 4 .dw ISWS .db 0 NOT: .dw nativeWord pop hl call chkPS ld a, l or h ld hl, 0 jr nz, .skip ; true, keep at 0 ; false, make 1 inc hl .skip: push hl jp next ; ( -- c ) ; C< DUP 32 CMP 1 - SKIP? EXIT DROP TOWORD .db "TOWORD" .fill 1 .dw NOT .db 0 TOWORD: .dw compiledWord .dw CIN .dw DUP .dw ISWS .dw CSKIP .dw EXIT .dw DROP .dw TOWORD .dw EXIT ; Read word from C<, copy to WORDBUF, null-terminate, and return, make ; HL point to WORDBUF. .db "WORD" .fill 3 .dw TOWORD .db 0 WORD: .dw compiledWord .dw NUMBER ; ( a ) .dw WORDBUF .dw TOWORD ; ( a c ) ; branch mark .dw OVER ; ( a c a ) .dw STORE ; ( a ) .dw ONE ; ( a 1 ) .dw PLUS ; ( a+1 ) .dw CIN ; ( a c ) .dw DUP ; ( a c c ) .dw ISWS ; ( a c f ) .dw CSKIP ; ( a c ) .dw BBR .db 18 ; here - mark ; at this point, we have ( a WS ) .dw DROP .dw ZERO .dw SWAP ; ( 0 a ) .dw STORE ; () .dw NUMBER .dw WORDBUF .dw EXIT .wcpy: .dw nativeWord ld de, WORDBUF push de ; we already have our result .loop: ld a, (hl) cp ' '+1 jr c, .loopend ld (de), a inc hl inc de jr .loop .loopend: ; null-terminate the string. xor a ld (de), a jp next .db "(parsed" .dw WORD .db 0 PARSED: .dw nativeWord pop hl call chkPS call parseDecimal jr z, .success ; error ld de, 0 push de ; dummy push de ; flag jp next .success: push de ld de, 1 ; flag push de jp next .db "(parse)" .dw PARSED .db 0 PARSE: .dw compiledWord .dw PARSED .dw CSKIP .dw .error ; success, stack is already good, we can exit .dw EXIT .error: .dw compiledWord .dw LIT .db "unknown word", 0 .dw PRINT .dw ABORT ; Indirect parse caller. Reads PARSEPTR and calls PARSEI: .dw compiledWord .dw PARSEPTR_ .dw FETCH .dw EXECUTE .dw EXIT ; Spit name (in (HL)) + prev in (HERE) and adjust (HERE) and (CURRENT) ; HL points to new (HERE) ENTRYHEAD: .dw nativeWord pop hl ld de, (HERE) call strcpy ld hl, (HERE) ld de, (CURRENT) ld a, NAMELEN call addHL call DEinHL ; Set word flags: not IMMED, so it's 0 xor a ld (hl), a inc hl ld (CURRENT), hl ld (HERE), hl jp next .db "CREATE" .fill 1 .dw PARSE .db 0 CREATE: .dw compiledWord .dw WORD .dw ENTRYHEAD .dw NUMBER .dw cellWord .dw WR .dw EXIT ; WARNING: there are no limit checks. We must be cautious, in core code, not ; to create more than SYSV_BUFSIZE/2 sys vars. ; Also: SYSV shouldn't be used during runtime: SYSVNXT won't point at the ; right place. It should only be used during stage1 compilation. This is why ; this word is not documented in dictionary.txt .db "(sysv)" .fill 1 .dw CREATE .db 0 SYSV: .dw compiledWord .dw WORD .dw ENTRYHEAD .dw NUMBER .dw sysvarWord .dw WR .dw NUMBER .dw SYSVNXT .dw FETCH .dw WR ; word written, now let's INC SYSVNXT .dw NUMBER ; a .dw SYSVNXT .dw DUP ; a a .dw FETCH ; a a@ .dw NUMBER ; a a@ 2 .dw 2 .dw PLUS ; a a@+2 .dw SWAP ; a@+2 a .dw STORE .dw EXIT .db "HERE" .fill 3 .dw SYSV .db 0 HERE_: ; Caution: conflicts with actual variable name .dw sysvarWord .dw HERE .db "CURRENT" .dw HERE_ .db 0 CURRENT_: .dw sysvarWord .dw CURRENT .db "(parse*" .dw CURRENT_ .db 0 PARSEPTR_: .dw sysvarWord .dw PARSEPTR .db "FLAGS" .fill 2 .dw PARSEPTR_ .db 0 FLAGS_: .dw sysvarWord .dw FLAGS ; ( n a -- ) .db "!" .fill 6 .dw FLAGS_ .db 0 STORE: .dw nativeWord pop iy pop hl call chkPS ld (iy), l ld (iy+1), h jp next ; ( n a -- ) .db "C!" .fill 5 .dw STORE .db 0 CSTORE: .dw nativeWord pop hl pop de call chkPS ld (hl), e jp next ; ( a -- n ) .db "@" .fill 6 .dw CSTORE .db 0 FETCH: .dw nativeWord pop hl call chkPS call intoHL push hl jp next ; ( a -- c ) .db "C@" .fill 5 .dw FETCH .db 0 CFETCH: .dw nativeWord pop hl call chkPS ld l, (hl) ld h, 0 push hl jp next ; ( a -- ) .db "DROP" .fill 3 .dw CFETCH .db 0 DROP: .dw nativeWord pop hl jp next ; ( a b -- b a ) .db "SWAP" .fill 3 .dw DROP .db 0 SWAP: .dw nativeWord pop hl call chkPS ex (sp), hl push hl jp next ; ( a b c d -- c d a b ) .db "2SWAP" .fill 2 .dw SWAP .db 0 SWAP2: .dw nativeWord pop de ; D pop hl ; C pop bc ; B call chkPS ex (sp), hl ; A in HL push de ; D push hl ; A push bc ; B jp next ; ( a -- a a ) .db "DUP" .fill 4 .dw SWAP2 .db 0 DUP: .dw nativeWord pop hl call chkPS push hl push hl jp next ; ( a b -- a b a b ) .db "2DUP" .fill 3 .dw DUP .db 0 DUP2: .dw nativeWord pop hl ; B pop de ; A call chkPS push de push hl push de push hl jp next ; ( a b -- a b a ) .db "OVER" .fill 3 .dw DUP2 .db 0 OVER: .dw nativeWord pop hl ; B pop de ; A call chkPS push de push hl push de jp next ; ( a b c d -- a b c d a b ) .db "2OVER" .fill 2 .dw OVER .db 0 OVER2: .dw nativeWord pop hl ; D pop de ; C pop bc ; B pop iy ; A call chkPS push iy ; A push bc ; B push de ; C push hl ; D push iy ; A push bc ; B jp next .db ">R" .fill 5 .dw OVER2 .db 0 P2R: .dw nativeWord pop hl call chkPS call pushRS jp next .db "R>" .fill 5 .dw P2R .db 0 R2P: .dw nativeWord call popRS push hl jp next .db "I" .fill 6 .dw R2P .db 0 I: .dw nativeWord ld l, (ix) ld h, (ix+1) push hl jp next .db "I'" .fill 5 .dw I .db 0 IPRIME: .dw nativeWord ld l, (ix-2) ld h, (ix-1) push hl jp next .db "J" .fill 6 .dw IPRIME .db 0 J: .dw nativeWord ld l, (ix-4) ld h, (ix-3) push hl jp next ; ( a b -- c ) A + B .db "+" .fill 6 .dw J .db 0 PLUS: .dw nativeWord pop hl pop de call chkPS add hl, de push hl jp next ; ( a b -- c ) A - B .db "-" .fill 6 .dw PLUS .db 0 MINUS: .dw nativeWord pop de ; B pop hl ; A call chkPS or a ; reset carry sbc hl, de push hl jp next ; ( a b -- c ) A * B .db "*" .fill 6 .dw MINUS .db 0 MULT: .dw nativeWord pop de pop bc call chkPS ; DE * BC -> DE (high) and HL (low) ld hl, 0 ld a, 0x10 .loop: add hl, hl rl e rl d jr nc, .noinc add hl, bc jr nc, .noinc inc de .noinc: dec a jr nz, .loop push hl jp next .db "/MOD" .fill 3 .dw MULT .db 0 DIVMOD: .dw nativeWord pop de pop hl call chkPS call divide push hl push bc jp next .db "AND" .fill 4 .dw DIVMOD .db 0 AND: .dw nativeWord pop hl pop de call chkPS ld a, e and l ld l, a ld a, d and h ld h, a push hl jp next .db "OR" .fill 5 .dw AND .db 0 OR: .dw nativeWord pop hl pop de call chkPS ld a, e or l ld l, a ld a, d or h ld h, a push hl jp next .db "XOR" .fill 4 .dw OR .db 0 XOR: .dw nativeWord pop hl pop de call chkPS ld a, e xor l ld l, a ld a, d xor h ld h, a push hl jp next ; It might look peculiar to have specific words for "0" and "1", but although ; it slightly beefs ups the ASM part of the binary, this one-byte-save-per-use ; really adds up when we compare total size. .db "0" .fill 6 .dw XOR .db 0 ZERO: .dw nativeWord ld hl, 0 push hl jp next .db "1" .fill 6 .dw ZERO .db 0 ONE: .dw nativeWord ld hl, 1 push hl jp next ; ( a1 a2 -- b ) .db "SCMP" .fill 3 .dw ONE .db 0 SCMP: .dw nativeWord pop de pop hl call chkPS call strcmp call flagsToBC push bc jp next ; ( n1 n2 -- f ) .db "CMP" .fill 4 .dw SCMP .db 0 CMP: .dw nativeWord pop hl pop de call chkPS or a ; clear carry sbc hl, de call flagsToBC push bc jp next ; Skip the compword where HL is currently pointing. If it's a regular word, ; it's easy: we inc by 2. If it's a NUMBER, we inc by 4. If it's a LIT, we skip ; to after null-termination. .db "SKIP?" .fill 2 .dw CMP .db 0 CSKIP: .dw nativeWord pop hl call chkPS ld a, h or l jp z, next ; False, do nothing. ld hl, (IP) ld de, NUMBER call .HLPointsDE jr z, .isNum ld de, FBR call .HLPointsDE jr z, .isBranch ld de, BBR call .HLPointsDE jr z, .isBranch ld de, LIT call .HLPointsDE jr nz, .isWord ; We have a literal inc hl \ inc hl call strskip inc hl ; byte after word termination jr .end .isNum: ; skip by 4 inc hl ; continue to isBranch .isBranch: ; skip by 3 inc hl ; continue to isWord .isWord: ; skip by 2 inc hl \ inc hl .end: ld (IP), hl jp next ; Sets Z if (HL) == E and (HL+1) == D .HLPointsDE: ld a, (hl) cp e ret nz ; no inc hl ld a, (hl) dec hl cp d ; Z has our answer ret ; This word's atom is followed by 1b *relative* offset (to the cell's addr) to ; where to branch to. For example, The branching cell of "IF THEN" would ; contain 3. Add this value to RS. .db "(fbr)" .fill 2 .dw CSKIP .db 0 FBR: .dw nativeWord push de ld hl, (IP) ld a, (hl) call addHL ld (IP), hl pop de jp next .db "(bbr)" .fill 2 .dw FBR .db 0 BBR: .dw nativeWord ld hl, (IP) ld d, 0 ld e, (hl) or a ; clear carry sbc hl, de ld (IP), hl jp next LATEST: .dw BBR