#include "user.inc" ; *** Consts *** ARGSPEC_SINGLE_CNT .equ 7 ARGSPEC_TBL_CNT .equ 12 ; *** Code *** .org USER_CODE call parseLine ld b, 0 ld c, a ; written bytes ret ; Sets Z is A is ';', CR, LF, or null. isLineEnd: cp ';' ret z cp 0 ret z cp 0x0d ret z cp 0x0a ret ; Sets Z is A is ' ' or ',' isSep: cp ' ' ret z cp ',' ret ; Sets Z is A is ' ', ',', ';', CR, LF, or null. isSepOrLineEnd: call isSep ret z call isLineEnd ret ; read word in (HL) and put it in (DE), null terminated. A is the read ; length. HL is advanced to the next separator char. readWord: push bc ld b, 4 .loop: ld a, (hl) call isSepOrLineEnd jr z, .success call JUMP_UPCASE ld (de), a inc hl inc de djnz .loop .success: xor a ld (de), a ld a, 4 sub a, b jr .end .error: xor a ld (de), a .end: pop bc ret ; (HL) being a string, advance it to the next non-sep character. ; Set Z if we could do it before the line ended, reset Z if we couldn't. toWord: .loop: ld a, (hl) call isLineEnd jr z, .error call isSep jr nz, .success inc hl jr .loop .error: ; we need the Z flag to be unset and it is set now. Let's CP with ; something it can't be equal to, something not a line end. cp 'a' ; Z flag unset ret .success: ; We need the Z flag to be set and it is unset. Let's compare it with ; itself to return a set Z cp a ret readLine: push de xor a ld (curWord), a ld (curArg1), a ld (curArg2), a ld de, curWord call readWord call toWord jr nz, .end ld de, curArg1 call readWord call toWord jr nz, .end ld de, curArg2 call readWord .end: pop de ret ; match argument string at (HL) with argspec A. ; Set Z/NZ on match matchArg: push bc push de push ix cp 0 jr z, .matchnone ; Let's see if our argspec is a "single" one. ex hl, de ; For "simple" cmp, we don't need HL. But we'll ; need it later. ld hl, argspecsSingle ld bc, ARGSPEC_SINGLE_CNT .loop1: cpi jr z, .matchsingle ; our argspec in the "single" list jp po, .loop1end jr .loop1 .loop1end: ; Not a "single" arg. Do the real thing then. ex hl, de ; now we need HL back... ld de, argspecTbl ld b, ARGSPEC_TBL_CNT .loop2: ld ixl, a ld a, (de) cp ixl jr z, .found ; got it! ld a, 5 call JUMP_ADDDE ld a, ixl djnz .loop2 ; exhausted? we have a problem os specifying a wrong argspec. This is ; an internal consistency error. jr .end .found: ; found the matching argspec row. Let's compare the strings now. inc de ; the string starts on the 2nd byte of the row ld a, 4 call JUMP_STRNCMP ; Z is set jr .end .matchsingle: ; single match is easy: compare A with (HL). They must be equal. ex hl, de ld b, a ld a, (hl) cp b ; Z set if A == B jr .end .matchnone: ld a, (hl) cp 0 ; arg must be null to match .end: pop ix pop de pop bc ret ; Compare primary row at (DE) with string at curWord. Sets Z flag if there's a ; match, reset if not. matchPrimaryRow: push hl push ix ld hl, curWord ld a, 4 call JUMP_STRNCMP jr nz, .end ; name matches, let's see the rest ld ixh, d ld ixl, e ld hl, curArg1 ld a, (ix+4) call matchArg jr nz, .end ld hl, curArg2 ld a, (ix+5) call matchArg .end: pop ix pop hl ret ; Parse line at (HL) and write resulting opcode(s) in (DE). Returns the number ; of bytes written in A. parseLine: call readLine push de ld de, instTBlPrimary .loop: ld a, (de) cp 0 jr z, .nomatch ; we reached last entry call matchPrimaryRow jr z, .match ld a, 7 call JUMP_ADDDE jr .loop .nomatch: xor a pop de ret .match: ld a, 6 ; upcode is on 7th byte call JUMP_ADDDE ld a, (de) pop de ld (de), a ld a, 1 ret ; In instruction metadata below, argument types arge indicated with a single ; char mnemonic that is called "argspec". This is the table of correspondance. ; Single letters are represented by themselves, so we don't need as much ; metadata. argspecsSingle: .db "ABCDEHL" ; Format: 1 byte argspec + 4 chars string argspecTbl: .db 'h', "HL", 0, 0 .db 'l', "(HL)" .db 'd', "DE", 0, 0 .db 'e', "(DE)" .db 'b', "BC", 0, 0 .db 'c', "(BC)" .db 'a', "AF", 0, 0 .db 'f', "AF'", 0 .db 'x', "(IX)" .db 'y', "(IY)" .db 's', "SP", 0, 0 .db 'p', "(SP)" ; This is a list of primary instructions (single upcode) that lead to a ; constant (no group code to insert). ; That doesn't mean that they don't take any argument though. For example, ; "DEC IX" leads to a special upcode. These kind of constants are indicated ; as a single byte to save space. Meaning: ; ; All single char registers (A/B/C etc) -> themselves ; HL -> h ; (HL) -> l ; DE -> d ; (DE) -> e ; BC -> b ; (BC) -> c ; IX -> X ; (IX) -> x ; IY -> Y ; (IY) -> y ; AF -> a ; AF' -> f ; SP -> s ; (SP) -> p ; None -> 0 ; ; This is a sorted list of "primary" (single byte) instructions along with ; metadata ; 4 bytes for the name (fill with zero) ; 1 byte for arg constant ; 1 byte for 2nd arg constant ; 1 byte for upcode instTBlPrimary: .db "ADD", 0, 'A', 'h', 0x86 ; ADD A, HL .db "CCF", 0, 0, 0, 0x3f ; CCF .db "CPL", 0, 0, 0, 0x2f ; CPL .db "DAA", 0, 0, 0, 0x27 ; DAA .db "DI",0,0, 0, 0, 0xf3 ; DI .db "EI",0,0, 0, 0, 0xfb ; EI .db "EX",0,0, 'p', 'h', 0xe3 ; EX (SP), HL .db "EX",0,0, 'a', 'f', 0x08 ; EX AF, AF' .db "EX",0,0, 'd', 'h', 0xeb ; EX DE, HL .db "EXX", 0, 0, 0, 0xd9 ; EXX .db "HALT", 0, 0, 0x76 ; HALT .db "INC", 0, 'l', 0, 0x34 ; INC (HL) .db "JP",0,0, 'l', 0, 0xe9 ; JP (HL) .db "LD",0,0, 'c', 'A', 0x02 ; LD (BC), A .db "LD",0,0, 'e', 'A', 0x12 ; LD (DE), A .db "LD",0,0, 'A', 'c', 0x0a ; LD A, (BC) .db "LD",0,0, 'A', 'e', 0x0a ; LD A, (DE) .db "LD",0,0, 's', 'h', 0x0a ; LD SP, HL .db "NOP", 0, 0, 0, 0x00 ; NOP .db "RET", 0, 0, 0, 0xc9 ; RET .db "RLA", 0, 0, 0, 0x17 ; RLA .db "RLCA", 0, 0, 0x07 ; RLCA .db "RRA", 0, 0, 0, 0x1f ; RRA .db "RRCA", 0, 0, 0x0f ; RRCA .db "SCF", 0, 0, 0, 0x37 ; SCF .db 0 ; *** Variables *** ; enough space for 4 chars and a null curWord: .db 0, 0, 0, 0, 0 curArg1: .db 0, 0, 0, 0, 0 curArg2: .db 0, 0, 0, 0, 0